第一题:产生100个随机数,求其最小值和最大值以及平均值;用了两种方法都可以求出三个值,还加上了总和。
2025-04-23 18:25:38 9KB labview labview练习
1
Matlab Simulink下的双馈风机变风速最大功率点追踪MPPT控制策略:可调参数,组合与阶跃风速模拟,专业跟踪控制文档详解,Matlab Simulink双馈风机变风速最大功率追踪控制策略详解:自定义参数调整与双闭环控制,组合风速与阶跃风速应用,Matlab simulink双馈风机,变风速最大功率,mppt跟踪控制,不是系统自带,参数可调。 采用双闭环控制,有组合风速,阶跃风速等。 注意,附赠文档说明 ,Matlab; Simulink双馈风机; 变风速最大功率; MPPT跟踪控制; 参数可调; 双闭环控制; 组合风速; 阶跃风速。,Matlab Simulink中的双馈风机控制:变风速最大功率MPPT跟踪及双闭环控制参数优化策略
2025-04-17 11:36:20 10.13MB sass
1
MATLAB环境下一种基于稀疏最大谐波噪声比的解卷积机械振动信号处理方法。 算法运行环境为MATLAB r2018a,实现基于稀疏最大谐波噪声比解卷积的机械振动信号处理方法,提供两个振动信号处理的例子。 算法可迁移至金融时间序列,地震 微震信号,机械振动信号,声发射信号,电压 电流信号,语音信号,声信号,生理信号(ECG,EEG,EMG)等信号。 压缩包=程序+数据+参考。 MATLAB环境下实现的基于稀疏最大谐波噪声比(Sparse Maximum Harmonic-to-Noise Ratio, SMHNR)的解卷积机械振动信号处理方法,是一种先进的信号处理技术。该方法能够在MATLAB r2018a这一特定的算法运行环境中应用,其主要作用是对机械振动信号进行高效处理。SMHNR解卷积算法通过识别和分离信号中的谐波成分,从而有效去除噪声,提高信号的清晰度。 该技术的核心在于稀疏表示,这使得算法能够以非常少的数据点表示复杂的信号。稀疏技术的应用能够使信号处理在不牺牲信号重要特征的前提下,有效减少数据量。同时,最大谐波噪声比的计算则是基于信号的谐波成分与噪声比值的最大化,这种方法能够保证从信号中提取出最重要的成分,而抑制那些噪声带来的干扰。 机械振动信号处理是该方法的一个主要应用场景。机械系统在运行过程中会产生各种振动信号,这些信号包含了丰富的系统状态信息。通过对振动信号的分析,可以识别出设备的磨损、故障和性能下降等问题。因此,该算法能够对机械系统的健康状况进行实时监测,有助于提前发现潜在的问题,并采取相应的维护措施。 除了机械振动信号之外,该算法还可以应用到金融时间序列分析、地震和微震信号的处理、声发射信号分析、电压和电流信号的监测、语音信号的处理等多个领域。这些应用表明,SMHNR解卷积技术具有广泛的适用性和强大的通用性。 为了更好地理解和应用这一技术,开发者在压缩包中提供了包括程序代码、处理数据和相关参考文献在内的完整资源。这些资源的提供,能够帮助研究人员和工程师快速上手,实现算法的复现和进一步的开发。 在实现上,该方法提供了两个具体的振动信号处理例子,这些例子不仅展示了算法的应用过程,同时也验证了其处理效果。通过实例演示,用户可以更加直观地了解算法的性能,并根据实际需要对算法进行调整和优化。 基于稀疏最大谐波噪声比的解卷积机械振动信号处理方法,因其在噪声去除和信号提取方面的优势,为机械振动分析和其他信号处理领域提供了一种有效的解决方案。而MATLAB环境下的实现,更是为信号处理领域提供了强大的工具支持。
2025-04-15 22:07:23 243KB safari
1
在本文中,我们将深入探讨如何使用Qt框架在Windows 11操作系统上实现一个无边框窗口,并添加类似于系统原生的“最大化”功能,利用Win11的Snap Layout特性。Qt是一个跨平台的C++图形用户界面应用程序开发框架,它为开发者提供了丰富的API和工具,使得构建高效、美观的应用程序变得简单。 让我们了解无边框窗口。在Qt中,我们可以创建一个没有系统标题栏和边框的窗口,这通常通过继承`QMainWindow`或`QWidget`类并重写其行为来实现。无边框窗口可以提供更自定义的外观和交互方式,但同时也需要我们自己实现拖动、缩放等基本操作。 为了创建无边框窗口,我们需要设置窗口的`setWindowFlags()`,例如: ```cpp setWindowFlags(Qt::FramelessWindowHint | Qt::WindowSystemMenuHint | Qt::WindowMinMaxButtonsHint); ``` 这段代码将禁用窗口的边框,同时保留系统菜单和最小化/最大化按钮。 接着,我们要实现窗口的拖动功能。这通常通过处理鼠标移动事件来完成,获取到鼠标的相对位置并更新窗口的位置: ```cpp void MyWidget::mouseMoveEvent(QMouseEvent *event) { if (event->buttons() & Qt::LeftButton && m_dragPos != event->pos()) { move(mapToGlobal(event->pos()) - m_dragPos); m_dragPos = event->pos(); } } void MyWidget::mousePressEvent(QMouseEvent *event) { if (event->button() == Qt::LeftButton) { m_dragPos = event->globalPos() - frameGeometry().topLeft(); } } ``` 对于最大化功能,由于我们已经移除了系统边框,所以不能直接使用`showMaximized()`。我们需要模仿Win11的Snap Layout功能。在Windows 11中,用户可以通过拖动窗口到屏幕边缘或使用快捷键触发Snap Layout,显示一组预设的窗口布局选项。我们可以通过`QWindow::windowStateChanged`信号来监听窗口状态的变化,并在窗口最大化时模拟Snap Layout效果。 我们需要引入Windows API,这通常通过`#include `来完成。然后,我们可以在窗口最大化时调用以下API: ```cpp #include void MyWidget::maximizeButtonClicked() { // 获取当前屏幕的Rect MONITORINFO monitorInfo; monitorInfo.cbSize = sizeof(MONITORINFO); GetMonitorInfo(MonitorFromWindow(handle(), MONITOR_DEFAULTTONEAREST), &monitorInfo); // 设置窗口位置和大小以填充整个屏幕 SetWindowPos(handle(), HWND_TOP, monitorInfo.rcMonitor.left, monitorInfo.rcMonitor.top, monitorInfo.rcMonitor.right - monitorInfo.rcMonitor.left, monitorInfo.rcMonitor.bottom - monitorInfo.rcMonitor.top, SWP_NOZORDER | SWP_NOACTIVATE); } ``` 此外,为了实现悬浮的“最大化”按钮,我们可以自定义一个QGraphicsView或QLabel,包含一个图标,并在其上响应鼠标点击事件。当点击这个按钮时,调用`maximizeButtonClicked()`函数。 在Qt中,实现这样的功能可能需要对Windows API有一定的了解,以及熟练运用Qt的事件处理机制。通过以上步骤,我们就可以在Win11环境下创建一个具有无边框、自定义最大化功能的Qt应用了。这不仅能够提供独特的用户体验,还能够充分利用Win11的新特性。在实际开发中,你还可以根据需要进一步定制窗口的外观和行为,比如添加自定义的拖动样式、调整按钮动画等。
2025-04-11 10:52:12 13KB win11
1
永磁直驱风力发电系统自抗扰控制与最大功率跟踪技术研究:机侧变流器自抗扰控制与仿真,网侧变流器PI控制及风速模型探讨,自抗扰控制,永磁直驱风力发电系统,永磁同步电机,最大功率跟踪,机侧变流器,网侧变流器 机侧变流器转速外环:采用自抗扰控制,LADRC,代码+simiulink仿真 网侧变流器采用PI控制 五种风速的风速模型?自抗扰控制的风力发电系统模型,两种模型 ,自抗扰控制; 永磁直驱风力发电系统; 永磁同步电机; 最大功率跟踪; 机侧变流器; 网侧变流器; LADRC; PI控制; 风速模型; 自抗扰控制风力发电系统模型。,自抗扰控制的永磁直驱风力发电系统研究:最大功率跟踪与双层变流器策略
2025-03-28 01:21:32 202KB
1
采用有限元软件ANSYS对某气体流量标准装置的气缸进行了壁厚优化设计。分析了气缸的最大应力、最大变形量等设计所关心的主要因素,并从理论上进行了校核。根据分析结果,优化壁厚参数,使得设计结果既满足使用要求又降低设备重量、节约成本。
2024-09-27 22:03:30 214KB ANSYS 最大变形量
1
永磁同步电机最大转矩电流比(MTPA)控制+弱磁控制simulink仿真模型,相关原理分析及说明: 永磁同步电机MTPA与弱磁控制:https://blog.csdn.net/qq_28149763/article/details/136348643?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22136348643%22%2C%22source%22%3A%22qq_28149763%22%7D
2024-09-12 11:20:40 299KB 电机控制 simulink PMSM
1
永磁同步电机最大转矩电流比(MTPA)控制simulink仿真模型,相关原理分析及说明: 永磁同步电机MTPA与弱磁控制:https://blog.csdn.net/qq_28149763/article/details/136348643?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22136348643%22%2C%22source%22%3A%22qq_28149763%22%7D
2024-09-12 11:18:53 283KB 电机控制 simulink PMSM
1
基于AUC的特征选择是一种用于机器学习中降维和提高模型泛化能力的方法。AUC(Area Under Curve,ROC曲线下的面积)是评估分类模型性能的重要指标,尤其在样本不平衡的情况下表现更加稳定。传统的特征选择方法往往关注单个特征的好坏,而忽视了特征间的互补性,即不同特征之间如何协同工作共同提高分类性能。 ANNC(Maximizing Nearest Neighbor Complementarity)是一种新颖的特征选择方法,它在AUC的基础上,通过考虑最近邻的互补性来提高特征选择的效率。这种方法不仅关注最近邻错分类信息(nearest misses),也考虑最近邻正分类信息(nearest hits),从而全面评价特征对之间的互补性。互补性意味着某些特征在组合中相互增强,通过相互协作能达到更佳的分类效果。 在ANNC方法中,最近邻的计算是在特征空间的不同维度上进行的,以此来评估特征之间的互补性。这种方法的优势在于它提供了一种新颖的方式来判断在另一个特征的辅助下,一个特征的区分度如何。然而,邻域信息通常对噪声很敏感,仅仅考虑一侧的信息(如最近邻错分类)可能会忽视正分类对特征互补性的影响。 ANNC方法的核心在于将这种局部学习基于的互补性评价策略整合到基于AUC的特征选择框架中,从而全面评价特征对之间的互补性。这样做有助于捕捉那些能够相互协作、共同提升识别性能的互补特征。 本文作者提出了ANNC这一算法,并在公开的基准数据集上进行了广泛的实验,以多种度量标准验证了新方法的有效性。实验结果表明,在不同的数据集和各种度量指标下,ANNC方法都显示出显著的性能提升。 ANNC方法不仅考虑了每个特征本身的特性,而且结合了特征之间的相互作用,从而提供了一种更为全面的特征选择策略。这对于复杂的学习场景,如文本分类、图像检索、疾病诊断等,都有着极其重要的意义。由于这些场景下的样本通常由大量的特征来描述,因此找到一个有效的特征子集,对于提高分类器性能和模型的可解释性至关重要。 ANNC的研究论文强调了特征互补性在提高分类性能方面的重要性,并通过实际的实验验证了这一点。特征互补性的概念可以推广到不同的机器学习任务中,而不仅仅是特征选择。在特征工程领域,了解特征之间的关系有助于构建更加强大和鲁棒的机器学习模型。因此,ANNC的贡献不仅限于其作为一个新的特征选择算法,更在于它为我们理解特征相互作用提供了一种新的视角。
2024-08-29 13:36:06 767KB 研究论文
1
知识辅助(KA)时空自适应处理(STAP)是一种吸引人的方案,用于提高在样本匮乏的异构环境中慢速移动目标的检测性能。 在本文中,我们解决了在KA约束下干扰协方差矩阵的最大似然估计问题。 为了降低内点法的复杂性,我们导出了干扰协方差矩阵的近似形式最大似然估计。 此外,对于在KA约束中仍然无法解决的开放问题的超参数选择,我们提出了一种基于似然函数和交叉验证的高效且全自动的方法。 我们发现,提出的估计器由白化样本协方差矩阵(SCM)的预白化步骤和特征值截断步骤组成,这与假定的杂波协方差(FMLACC)方法与现有的快速最大似然性有些相似。 但是,他们采用了不同的方法来截断增白的SCM的特征值。 数值模拟还表明,通过适当地选择超参数,所提出的估计可以显着优于在某些情况下FMLACC方法。
2024-07-17 09:17:31 472KB 研究论文
1