内容概要:文章介绍了一种应用于增程式电动汽车的自适应等效燃油消耗最小化(ECMS)能量管理策略,通过Matlab的M程序实现。策略核心在于引入工况识别机制,根据车辆速度历史窗口判断当前运行在城市或高速工况,并动态调整等效因子lambda,结合电池SOC状态进行功率分配优化与补偿修正,提升燃油经济性。 适合人群:具备一定Matlab编程基础和新能源汽车控制背景的工程师或研究生,工作1-3年的电控系统研发人员。 使用场景及目标:①用于增程式电动车能量管理系统的仿真与开发;②理解自适应ECMS中工况识别、等效因子动态调整、SOC反馈控制的设计逻辑;③优化实际驾驶中的燃油效率,降低综合油耗。 阅读建议:建议结合Matlab环境运行示例代码,重点分析lambda的工况切换逻辑、fminbnd优化求解过程及SOC补偿机制,注意实际调参中的反直觉现象对策略设计的启发。
2025-10-11 00:00:25 251KB
1
内容概要:本文详细介绍了英飞凌基于TC27xC平台的电动汽车电机控制器参考方案。该方案涵盖了详细的硬件原理图和完整的代码实现,旨在为开发者提供一个全面的开发起点。硬件方面,文中展示了主功率电路、电源管理单元等关键模块的设计亮点,如IGBT模块的并联设计、超级电容的应用等。软件部分则深入探讨了初始化代码、矢量控制算法、PWM中断处理、故障恢复机制等核心技术。此外,文章还分享了一些实用的开发经验和潜在的技术挑战,如PWM死区时间的优化、ADC采样的精准配置等。 适合人群:从事电动汽车电机控制系统开发的硬件工程师和嵌入式软件工程师,特别是那些希望深入了解英飞凌TC27xC平台特性和最佳实践的人群。 使用场景及目标:①帮助开发者快速掌握基于TC27xC平台的电机控制器设计方法;②提供详细的硬件和软件实现细节,便于理解和改进现有设计方案;③分享实战经验,规避常见陷阱,提高开发效率和系统可靠性。 其他说明:本文不仅提供了详尽的技术细节,还融入了许多来自实际项目的宝贵经验,使得读者能够更好地应对实际开发中的复杂问题。
2025-10-10 23:48:31 1.1MB
1
新能源汽车在执行标准,18488.2-2015.标准共包含两个文件。
2025-09-03 16:03:55 11.05MB 电动汽车 电机控制
1
基于MATLAB Simulink的电动汽车ABS模型搭建与解析:包含制动力与滑移率计算等详尽过程说明及建模文件,专为初学者打造,基于MATLAB Simulink的电动汽车ABS模型构建:前后轮制动力与滑移率详解,汽车制动防抱死模型ABS模型。 基于MATLAB Simulink搭建电动汽车直线abs模型,包含前后轮系统制动力,滑移率计算和制动距离相关计算,相关模型文件可为初学者提供便利,有详细的建模过程,有Word说明文件 ,汽车制动防抱死; ABS模型; MATLAB Simulink; 直线abs模型; 制动力; 滑移率计算; 制动距离计算; 模型文件; 详细建模过程; Word说明文件。,基于MATLAB Simulink的电动汽车ABS模型:前后轮制动力与滑移率计算及制动距离分析
2025-09-02 13:54:28 2.1MB
1
利用MATLAB进行电动汽车充放电负荷计算的方法,特别是采用蒙特卡洛模拟法来预测大规模电动汽车的充电行为及其对电网的影响。文中提供了完整的MATLAB代码,涵盖了从参数初始化到最终负荷曲线可视化的全过程。关键步骤包括生成电动汽车的基本参数(如电池容量、充电启动时间),并通过蒙特卡洛循环计算每辆车的具体充电需求,最终汇总成总的负荷曲线。此外,代码还包括了详细的注释和高质量的图表输出,使得整个过程既直观又易懂。 适合人群:电气工程专业学生、从事智能电网研究的技术人员、对电动汽车充电负荷感兴趣的科研工作者。 使用场景及目标:适用于需要评估大量电动汽车接入电网后的负荷变化情况,帮助研究人员和工程师更好地理解和优化电动汽车充电系统的运行机制,特别是在城市交通规划和电力系统调度方面。 其他说明:该代码不仅可用于学术研究,还可以作为实际项目中的工具,支持参数敏感性分析,从而为电网规划提供科学依据。
2025-08-28 13:13:13 814KB
1
灵驱VCU是基于OpenInverter生态的开源车辆控制单元,专为电动汽车改装与集成化控制设计。项目以STM32为核心,支持日产Leaf、三菱Outlander、特斯拉等20+品牌逆变器、电池系统及快充协议(CCS/Chademo),兼容宝马、大众、丰田等多车型CAN/LIN总线通信。通过模块化架构实现驱动控制、能量管理、热协调与充电协议解析,提供从硬件编译(ARM工具链 + libopencm3/openinv依赖)到实车部署(E39/E46等车型验证)的全栈解决方案,助力开发者快速构建高兼容性电动车辆控制平台。
2025-08-21 12:05:08 2.02MB
1
增程式电动汽车中基于工况的自适应ECMS(等效碳排放最小化策略)能量管理策略的Matlab实现。首先,通过一段核心代码展示了如何根据车辆行驶速度动态调整等效因子λ,从而优化发动机和电动机之间的功率分配。接着,文章解释了SOC(荷电状态)对等效因子的影响机制以及功率优化的具体实现方式。此外,还提供了一个典型的NEDC工况仿真实验,验证了该策略的有效性和优越性。实验结果显示,在不同工况下,自适应ECMS策略能够有效减少油耗并提高能源利用效率。 适合人群:从事新能源汽车研究、开发的技术人员,尤其是熟悉Matlab编程并对能量管理策略感兴趣的工程师。 使用场景及目标:适用于希望深入了解增程式电动汽车能量管理策略的设计与实现的研究人员和技术开发者。目标是掌握如何通过编程手段优化车辆的能量管理系统,提升整车性能。 其他说明:文中提到的一些关键参数设置(如速度窗口、等效因子计算公式等)均来源于实际测试数据,为读者提供了宝贵的实践经验。同时强调了全局优化并非总是最佳选择,适时变化的等效因子更能适应复杂多变的实际驾驶环境。
2025-08-12 17:17:44 215KB Matlab 自适应控制 NEDC工况
1
内容概要:本文详细介绍了使用MATLAB/Simulink构建电动汽车动力电池健康状态(SOH)估计模型的方法。模型分为三个主要部分:电池等效电路、SOC估算器和SOH计算模块。核心算法采用扩展卡尔曼滤波器进行SOC修正,并通过监测满充阶段的电压变化来计算SOH。文中提供了详细的代码实现,包括参数在线更新、温度补偿、以及模型验证方法。此外,还讨论了常见的调参技巧和注意事项,如SOC初始值敏感性和噪声注入等。 适合人群:从事电动汽车电池管理系统研究的技术人员、高校相关专业师生、对电池健康管理感兴趣的工程技术人员。 使用场景及目标:适用于电动汽车电池健康状态评估、电池管理系统优化、电池老化特性研究等领域。目标是提高电池健康状态估算的准确性,延长电池使用寿命,确保车辆安全可靠运行。 其他说明:建议读者在理解和掌握基本原理的基础上,逐步深入调优模型参数,避免盲目增加复杂度。同时,推荐使用公开数据集进行模型验证,确保结果的可靠性。
2025-07-24 16:37:17 119KB
1
内容概要:本文探讨了如何利用动态规划(Dynamic Programming, DP)和模型预测控制(Model Predictive Control, MPC)实现并联混合动力电动汽车的优化控制。文中详细介绍了这两种方法的工作原理及其结合方式,即通过将DP嵌入MPC的滑动窗口中进行滚动优化,从而达到节省燃料消耗的目的。此外,还提供了具体的MATLAB代码示例,包括状态转移矩阵构建、滚动优化循环以及实时控制循环等关键部分,并展示了实验结果表明该策略能够有效减少油耗并稳定电池荷电状态(State of Charge, SOC)。 适用人群:从事汽车工程、自动化控制领域的研究人员和技术人员,特别是关注新能源汽车节能技术的专业人士。 使用场景及目标:适用于希望深入了解并联混合动力电动汽车控制系统的设计原理和实现细节的研究者;旨在提高车辆能源效率的同时保持良好的驾驶性能。 其他说明:文中提到的方法虽然增加了算法复杂度,但由于现代车载芯片的强大运算能力,使得这种方法成为可能。对于有兴趣进一步探索相关主题的人士来说,这是一份非常有价值的参考资料。
2025-07-24 16:32:16 2.51MB
1
内容概要:本文探讨了电动汽车(EV)充放电调度过程中电动汽车响应率的重要性及其计算方法。电动汽车响应率是指车主对接收到的充放电调度指令的响应程度。文中指出,尽管放电可以带来奖励,但由于奖励机制不完善或其他原因,部分车主仍不愿参与放电。为此,作者提出了一种基于数学模型的响应率计算方法,利用Matlab、YALMIP和CPLEX等工具进行了建模和求解。通过这段代码展示了如何计算响应率,并强调了这种方法对于提高系统效率的关键作用。此外,还提出了未来的研究方向,如考虑车主的充电需求和电网的负荷情况。 适合人群:从事智能电网研究的技术人员、电力系统工程师、电动汽车相关领域的研究人员。 使用场景及目标:适用于希望深入了解电动汽车充放电调度机制及其优化策略的人群。目标是帮助相关人员掌握电动汽车响应率的概念及其计算方法,进而提升智能电网的整体性能。 其他说明:本文不仅提供了理论分析,还包括具体的代码实现,有助于读者更好地理解和应用所介绍的方法。
2025-07-01 13:10:24 3.5MB
1