本研究的标题为“非线性事件触发控制策略的多智能体系统有限时间一致性”,该标题所涵盖的知识点主要涉及多智能体系统的控制理论、事件触发控制策略以及非线性系统在有限时间内的同步(一致性)问题。 多智能体系统是由多个自主的智能体(如机器人、移动传感器、无人机等)组成的分布式系统,它们通过相互之间的通信和协作来完成复杂的任务。多智能体系统的协调控制吸引了众多研究领域的关注,因为它在很多应用中,如无人机飞行控制、多个微卫星的姿态同步、环境监控等方面具有重要的作用。 在多智能体系统中,“一致性”(consensus)是一个非常核心的概念。一致性指的是所有智能体通过相互作用最终在某种量(如位置、速度、方向等)上达成一致。这种行为是形成控制、集群等更复杂集体行为的基础。例如,在形成控制中,智能体需要根据与邻居智能体之间的相对位置信息来调整自己的位置,以形成预定的队形或图案。 在实际应用中,由于每个智能体通常具有有限的能量资源,因此在控制器设计中必须考虑能源的节约。传统的一致性控制策略通常需要每个智能体定期地更新控制输入并与其他智能体进行通信,这可能会导致通信资源的大量消耗和控制器更新的高频率。 为了解决这个问题,本研究提出了一种基于事件触发策略的非线性一致性协议。事件触发控制是一种智能控制方法,它根据预设的条件来决定是否更新控制器或进行通信,从而显著减少了通信消耗和控制器更新的频率。与传统的周期性触发方式相比,事件触发策略只有在系统状态发生显著变化时才会触发控制器的更新,这样可以避免频繁的计算和通信,从而节省能源。 文章中提出的两个新的非线性一致性协议,可以显著减少通信消耗和控制器更新频率。研究结果表明,在提出的非线性一致性协议下,多智能体系统能够在有限时间内达成一致性。此外,研究还提供了触发间隔的界限,以证明不存在Zeno行为(指控制输入的触发频率无限大的情况,即所谓的“无止境”的行为)。 为了验证所提出的一致性协议的有效性,研究中采用了仿真实验。仿真实验是验证理论和算法可行性的重要手段,通过仿真实验可以模拟多智能体系统在不同条件下的行为,并验证一致性协议是否能够使系统达到预期的同步效果。 文章的研究内容包括了对领导者存在和不存在两种情况下多智能体系统的有限时间一致性问题的探讨。在有领导者的情况下,多智能体系统会以领导者的行为作为参考,使得所有智能体跟随领导者达成一致性。而在没有领导者的情况下,智能体需要通过相互之间的信息交换,自主地达成一致性。 研究论文通常包含提出问题、设计方法、理论分析、仿真实验和结论等部分。本研究的理论分析部分可能涉及到数学证明和稳定性分析,以展示在特定条件下多智能体系统达成一致性的可能性和稳定性。此外,论文可能会讨论所提出的协议与现有协议相比的性能优劣,以及实际应用中的潜在问题和解决方案。 需要注意的是,研究论文的写作通常遵循一定的格式和标准。例如,论文的作者会给出通信地址和电子邮件地址,以便读者进行交流和询问。此外,文章会标明接收日期、修订日期和接受日期,以及文章的DOI编号,这有助于读者查找和引用。在论文中还会出现关键词和摘要部分,以简明扼要地介绍研究内容和结论。这些内容虽然不是直接的学术知识点,但它们为学术交流提供了便利。
2025-05-12 21:00:00 304KB 研究论文
1
STM32F103C6是意法半导体(STMicroelectronics)生产的基于ARM Cortex-M3内核的微控制器,广泛应用于嵌入式系统设计。Proteus是一款电子设计自动化软件,可以进行虚拟原型设计和仿真,使得在硬件制作之前就能验证程序功能。 在这个项目中,我们关注的是STM32F103C6如何利用定时器触发ADC(模拟数字转换器)采样,再通过DMA(直接存储器访问)将数据传输到MCU的内存,并最终通过串口发送出去。这是一个典型的实时数据采集和通信应用。 1. **定时器触发ADC采样**: - 定时器(Timer)在STM32中常用于生成精确的时间间隔,它可以配置为中断或DMA请求源。在此案例中,定时器被设置为在特定周期后触发ADC转换,确保采样频率的稳定。 - ADC(ADC1、ADC2或ADC3)配置为外部触发模式,选择相应的定时器作为启动信号。当定时器的特定事件发生(如更新事件)时,ADC开始执行一次或连续的转换。 2. **ADC DMA配置**: - DMA(Direct Memory Access)允许数据在没有CPU干预的情况下从外设直接传输到内存或反之。在本项目中,ADC的转换结果通过DMA通道传输到SRAM,减轻了CPU负担,提高了系统效率。 - 需要配置DMA控制器,选择正确的通道、优先级和数据宽度,同时设置ADC的DMA请求源为定时器触发。 3. **串口通信**: - STM32F103C6内置USART(通用同步/异步收发传输器)或UART接口,用于与外部设备进行串行通信。在这个项目中,采样数据被送入内存后,可能通过USART发送到其他设备,如PC或其他微控制器。 - USART需要配置波特率、数据位、停止位、奇偶校验等参数,并开启中断或DMA发送,以便在数据准备好后立即发送。 4. **项目文件解析**: - `adcdma.ioc`:这是Proteus项目的配置文件,包含了电路图的元器件布局和连接关系。 - `.mxproject`:可能是Keil MDK工程文件,包含编译和调试项目所需的配置。 - `adcdma.pdsprj`:可能是另一个版本的项目文件,可能对应不同的IDE或编译器。 - `wx shitoudianzikai.txt`:这看起来是一个文本文件,可能是项目相关的说明或者日志。 - `联系我.url`:一个链接文件,可能指向开发者提供的联系方式。 - `adcdma.pdsprj.wanmeiyingjianp.wanmeiyingjian.workspace`:可能是开发环境的工作区文件,保存了工作空间的设置和布局。 - `Drivers`、`Core`、`MDK-ARM`:这些文件夹可能包含驱动库、核心库以及MDK-ARM编译工具链的文件。 5. **开发流程**: - 在Proteus中搭建STM32F103C6和其他必要的组件,如ADC、串口模块、定时器和可能的虚拟示波器或终端。 - 使用Keil MDK编写C代码,配置定时器、ADC、DMA和串口,并实现相应的功能函数。 - 在Keil MDK中编译代码,生成HEX或BIN文件。 - 将生成的二进制文件烧录到Proteus中的STM32模型,然后启动仿真,观察数据采集和传输是否正常。 这个项目展示了STM32在实时数据采集和通信中的应用,结合了定时器、ADC、DMA和串口通信等多个关键功能,对于学习STM32和嵌入式系统开发具有很高的实践价值。
2025-05-07 16:34:40 21.02MB stm32 proteus
1
· 功能说明:代码实现了基于YOLO模型的摔倒行为实时检测,当连续检测到摔倒的帧数超过设定阈值时触发报警。 · · 过程说明:通过摄像头获取视频流帧数据,利用YOLO模型进行目标检测,统计摔倒行为的连续帧数,并在达到报警条件时触发提示或报警逻辑。 基于YOLO模型的摔倒行为实时检测技术是一种利用深度学习方法实现的视觉监测系统,其主要功能是在实时视频流中检测人的摔倒行为,并在识别到摔倒动作后触发报警。这项技术在老年人居家照护、公共场所安全监控等领域具有广泛的应用前景。YOLO模型(You Only Look Once)是一种流行的实时对象检测算法,它能够在单一网络中同时进行目标定位和分类,具有速度快、精度高的特点,非常适合于实时视频分析场景。 YOLO模型的摔倒行为实时检测流程主要包括以下几个步骤:系统通过摄像头设备获取实时视频流的帧数据;将获取的视频帧输入到YOLO模型中进行目标检测,得到包含类别ID、置信度和边界框信息的检测结果;接下来,系统会检查检测结果中是否存在摔倒行为(即类别ID为设定的摔倒类别标识),并统计连续检测到摔倒行为的帧数;当连续帧数超过设定的阈值时,系统将触发报警机制,如在视频中叠加报警提示文字或执行其他报警逻辑,如发送通知到远程设备。 代码实现方面,需要进行模型初始化、视频流读取、YOLO模型预测、摔倒行为判断与报警提示的绘制等操作。具体来说,首先需要安装YOLOv5等模型库,并加载预训练的模型文件;然后,初始化摄像头视频流,并设置摔倒行为的类别标识和报警阈值;在循环读取视频帧的同时,利用YOLO模型进行实时目标检测,并根据检测结果判断是否为摔倒行为;如果检测到摔倒行为,则增加摔倒帧数计数器,并在满足报警条件时输出报警提示;显示处理后的视频,并允许用户通过按键退出程序。 在技术应用中,此类实时摔倒检测系统需要考虑算法的准确性和鲁棒性,例如通过优化YOLO模型训练过程中的数据集和参数设置,以提高对摔倒行为识别的准确率,并减少误报和漏报的情况。同时,系统也应具备良好的可扩展性和易用性,使得非专业人员也能简单快捷地部署和使用。
2025-04-28 19:57:34 13KB yolo
1
**内容概要:** 本项目旨在利用STM32系列微控制器与HLK-FM225人脸识别模块,开发一套高效的人脸识别系统。HLK-FM225是一款集成了高性能人脸识别算法的模块,通过串行接口(如UART或I²C)与STM32通信,实现人脸的捕捉、识别与验证功能。项目的核心在于编写STM32的控制代码,用于初始化HLK-FM225模块、发送指令、接收识别结果,并根据这些结果执行相应的控制逻辑,比如门禁系统的开启、报警触发等。此外,还需设计用户界面(如果有的话),以便于配置模块参数和查看识别状态。 **使用场景:** 1. **智能门禁系统**:在办公大楼、住宅小区入口处安装,实现员工或居民的快速无接触通行,提高安全性与便利性。 2. **安全监控**:结合安防摄像头,在公共场所自动识别特定人员或黑名单个体,及时预警可疑行为,增强公共安全。 3. **考勤系统**:企业内部用于员工考勤,替代传统打卡机,提高考勤效率与精确度。 4. **个性化服务**:零售业或酒店通过人脸识别提供个性化的客户服务,如定制推荐、快速入住等。 5. **智能家居**:根据家庭成员的不同识别。
2024-10-22 17:16:17 500KB stm32
1
《555芯片在施密特触发器电路中的应用》 555定时器芯片是一种广泛应用的集成电路,因其灵活性和多功能性,在电子工程领域中占据了重要地位。它能被用于各种不同的电路设计,如振荡器、定时器、脉冲发生器等。其中,用555芯片设计的施密特触发器电路是其典型应用之一,这种电路具有优秀的阈值特性,广泛用于信号整形和噪声消除。 施密特触发器,又称为回转率触发器,是一种双稳态电路,它的输入端有两个不同的阈值电压,分别被称为正向阈值电压和负向阈值电压。当输入电压超过正向阈值时,触发器状态翻转,输出变为高电平;而当输入电压低于负向阈值时,触发器再次翻转,输出变为低电平。这种特性使得施密特触发器特别适合处理有噪声的输入信号,因为它可以将模糊的边沿转换为清晰的开关信号。 555芯片在构建施密特触发器时,通常采用其内部的比较器结构。555芯片由三个电压比较器组成,通过调整外部电容和电阻网络,可以设置这两个阈值电压。电路的基本连接方式是:将555芯片的触发端(TH)和复位端(TR)短接,然后通过两个可调电阻分压来设定阈值电压。阈值电压的设置与555芯片的电源电压(Vcc)和外部电阻比有关。 在实际操作中,555芯片的控制电压(CV)端口可以用来调节阈值电压,提供更灵活的电路设计。当CV端口未连接时,施密特触发器的阈值电压大约是电源电压的1/3和2/3。如果需要调整这些阈值,可以通过连接一个外部电压到CV端口来实现。 在设计施密特触发器电路时,需要考虑以下几个关键因素: 1. **阈值电压选择**:选择合适的阈值电压对电路性能至关重要。阈值电压应该足以过滤掉输入信号中的噪声,同时又不会对有效信号造成误触发。 2. **电源电压**:555芯片的电源电压范围通常在4.5V至16V之间,选择合适的电源电压可以确保触发器在预期的工作范围内稳定工作。 3. **响应时间**:施密特触发器的转换速度受到外部电容和电阻的影响。较大的电容会增加响应时间,但可以降低输出的噪声;较小的电阻则可以提高响应速度,但可能导致更高的功耗。 4. **稳定性**:为了保证电路的稳定性,需要确保所有组件的精度和一致性。对于精密应用,可能需要使用精密电阻和电容。 总结来说,555芯片设计的施密特触发器电路结合了555定时器的灵活性和施密特触发器的优良特性,适用于各种需要稳定信号处理的场合。通过对电路参数的精确控制,我们可以定制出满足特定需求的触发器,如高速响应、低噪声或宽阈值电压范围。这份“用555芯片设计的施密特触发器电路.doc”文档详细地阐述了这一过程,为电子工程师提供了宝贵的参考资料。
2024-09-12 15:02:22 71KB 芯片设计 施密特触发器
1
这几天一直在使用STM32来写sensorless BLDC的驱动框架,那么必须会用到TIM1的CCR1/CCR2/CCR3产生的六路互补PWM,以及用CCR4来产生一个中断,用来在PWM-ON的时候产生中断进行过零检测,以及相电流的检测等。 在STM32微控制器中,实现传感器无刷直流(BLDC)电机驱动的关键技术之一是高效地采集电机相电流和过零检测。本篇将详细阐述如何利用TIM1定时器生成6路ADC采样,并通过CCR4触发ADC1的注入通道进行采样。 TIM1是一个高级定时器,它具有丰富的功能,包括产生PWM脉冲、中断和事件触发。在BLDC驱动框架中,TIM1的CCR1、CCR2和CCR3通常用于生成六路互补PWM信号,以驱动电机的三相。互补PWM模式可以确保电机相位在正确的时刻开启和关闭,从而实现无刷控制。 要生成这6路PWM,我们首先需要配置TIM1的时间基(Time Base)。例如,我们可以设定TIM_TimeBaseStructure结构体,包括计数周期(TIM_Period)、预分频器(TIM_Prescaler)、计数模式(TIM_CounterMode_Up)、时钟分频因子(TIM_ClockDivision)和重复计数器(TIM_RepetitionCounter)。初始化TIM1后,再通过TIM_TimeBaseInit函数设置这些参数。 接着,为了支持死区时间和自动输出功能,我们需要对TIM1的BreakDeadTimeConfig(TIM_BDTRInitStructure)进行初始化。这涉及到开启死区时间(TIM_DeadTime)、断路状态(TIM_Break和TIM_BreakPolarity)以及自动输出使能(TIM_AutomaticOutput)等。 对于PWM通道的设置,例如OCR1A、OCR1B、OCR2A、OCR2B、OCR3A和OCR3B,我们需要使用TIM_OCInitStructure结构体,定义PWM模式(TIM_OCMode_PWM1)、输出状态(TIM_OutputState_Disable/Enable)、输出极性(TIM_OCPolarity_High/Low)以及其他相关参数,然后分别调用TIM_OC1Init、TIM_OC2Init和TIM_OC3Init等函数初始化各通道。 在PWM模式下,通过CCR4的比较匹配事件,可以触发ADC1的注入通道采样。注入通道是ADC的一个特性,允许在常规转换序列之外进行单独的采样和转换,通常用于实时监测特定事件。为了实现这个功能,我们需要配置ADC的注入通道和触发源。例如,设置ADC1注入通道的采样时间、序列位置和触发源为TIM1_CCR4的更新事件。完成这些设置后,当CCR4的值与定时器计数值匹配时,ADC1将开始采样。 在实际应用中,CCR4的中断可用于过零检测。当PWM波形的占空比达到0或100%时,CCR4会产生中断,此时可以通过中断服务程序进行过零检测和相电流的计算。此外,还可以配置DMA(直接内存访问)与ADC1配合,自动将采样结果传输到内存,减轻CPU负担,提高系统效率。 总结来说,通过STM32的TIM1定时器,我们可以生成6路互补PWM信号,用于驱动BLDC电机。同时,利用CCR4的中断触发ADC1的注入通道采样,实现过零检测和实时电流监控。这一配置对于构建高效、精准的无传感器BLDC驱动系统至关重要。
2024-09-01 16:06:26 40KB TIM1 6路ADC CCR4 ADC1
1
多智能体系统——竞争网络下异构多智能体系统的分组一致性问题 Group consensus of heterogeneous multi-agent system (附论文链接+源码Matlab) 多智能体系统——具有非线性不确定干扰的多智能体系统的固定时间事件触发一致性控制(附论文链接+源码Matlab) 2021年五一杯数学建模消防救援问题思路 2021年MathorCup A题自动驾驶中的车辆调头问题思路(附论文 程序链接)
2024-08-11 18:45:48 11KB 网络 网络 matlab
1
JavaScript加载等待效果是一种常见用户体验优化技术,用于在数据加载期间向用户展示反馈,告知他们系统正在处理请求。这种效果通常会在用户点击按钮或链接后显示,直到后台数据完全加载完毕。下面将详细介绍实现这一效果的原理及步骤。 一、创建HTML结构 我们需要在页面上设置一个触发加载等待效果的元素,通常是按钮。例如: ```html ``` 这里我们有一个id为`load-btn`的按钮和一个id为`loading-mask`的加载层,初始状态下加载层是隐藏的。 二、CSS样式 为了使加载等待效果更具视觉吸引力,我们可以为加载层添加一些基本样式: ```css #loading-mask { position: fixed; top: 0; left: 0; width: 100%; height: 100%; background-color: rgba(255, 255, 255, 0.7); display: flex; justify-content: center; align-items: center; z-index: 9999; } ``` 这段CSS代码将加载层设置为全屏覆盖,背景半透明,并居中显示“数据加载中...”。 三、JavaScript实现 接下来,我们需要使用JavaScript来监听按钮点击事件并控制加载层的显示与隐藏。这里我们可以使用原生JavaScript或者jQuery等库来实现: **原生JavaScript:** ```javascript document.getElementById('load-btn').addEventListener('click', function() { var loadingMask = document.getElementById('loading-mask'); loadingMask.style.display = 'flex'; // 在这里执行你的数据加载操作 setTimeout(function() { // 假设数据加载完成,隐藏加载层 loadingMask.style.display = 'none'; }, 2000); // 2秒后模拟数据加载完成 }); ``` **jQuery版本:** ```javascript $('#load-btn').on('click', function() { $('#loading-mask').show(); // 进行数据加载操作 setTimeout(function() { // 模拟数据加载完成,隐藏加载层 $('#loading-mask').hide(); }, 2000); }); ``` 在这段代码中,当用户点击按钮时,加载层会显示出来,然后执行数据加载操作(在这个例子中,我们使用setTimeout模拟了2秒的数据加载时间)。加载完成后,通过JavaScript隐藏加载层。 四、动态加载效果 为了增强用户体验,还可以在加载层中加入动画效果,如旋转的加载图标、进度条等。这可以通过CSS3的动画或JavaScript库如Animate.css实现。 五、注意事项 1. 考虑到性能,避免在加载等待层下执行不必要的DOM操作。 2. 如果数据加载时间过长,可以提供取消或重试的选项。 3. 确保加载层具有合适的z-index,使其始终位于页面其他元素之上。 4. 对于触摸设备,考虑处理touchstart事件,以防止在触摸设备上出现延迟。 总结,JavaScript加载等待效果的实现主要涉及HTML结构、CSS样式以及JavaScript事件监听和控制。通过合理的布局和动画设计,可以显著提升用户的交互体验,让用户在等待数据加载时有明确的反馈,从而提高应用的易用性和满意度。
2024-07-24 09:15:50 16KB 数据加载中 加载等待
1
Microsoft SQL Server:trade_mark: 2000 提供了两种主要机制来强制业务规则和数据完整性:约束和触发器。触发器是一种特殊类型的存储过程,它不同于之前的我们介绍的存储过程。触发器主要是通过事件进行触发被自动调用执行的。而存储过程可以通过存储过程的名称被调用。 Ø 什么是触发触发器对表进行插入、更新、删除的时候会自动执行的特殊存储过程。触发器一般用在check约束更加复杂的约束上面。触发器和普通的存储过程的区别是:触发器是当对某一个表进行操作。诸如:update、insert、delete这些操作的时候,系统会自动调用执行该表上对应的触发器。SQL Server 2005中触发
2024-07-07 17:12:29 80KB delete select SQL
1