财务风险识别的研究具有十分重要的意义,针对当前财务风险识别方法存在误差大、效率低等弊端,以提高财务风险识别正确率为目标,提出了模式识别技术的财务风险识别方法。对当前各种财务风险识别方法进行分析,找到引起财务风险识别效果不理想的原因,引入模式识别技术中的在线极限学习机描述财务风险变化特点,并建立财务风险识别模型,采用具体实例与其他财务风险识别方法进行了对比实验。结果表明,文中方法减少了财务风险出现误识的概率,财务风险识别正确率得到了明显的改善,财务风险识别速度加快,具有较明显的优势。
1
针对传统计算机辅助检测系统中肺结节检测存在大量假阳性的问题,提出一种基于三维卷积神经网络的肺结节识别方法。首先,将传统二维卷积神经网络扩展为三维卷积神经网络,充分挖掘肺结节的三维特征,增强特征的表达能力;其次,将密集连接网络与SENet相结合,在加强特征传递和复用的同时,通过特征重标定自适应学习特征权重;另外,引入focal loss作为网络的分类损失函数,提高对难样本的学习。在LUNA16数据集上的实验结果表明:与当前的主流深度学习算法相比,所提网络模型在平均每组CT图像中假阳个数为1和4时的检出率达到了0.911和0.934,CPM得分为0.891,优于大部分主流算法。
2022-12-06 13:24:54 2.76MB 图像处理 计算机辅 肺结节 三维卷积
1
沟通是聋哑社区和社会其他成员之间的障碍。 手语用于在这些不会说话和听不懂的人之间进行交流。 在过去的几年中,手语识别的自动化已引起研究人员的关注。 已经开发了许多复杂且昂贵的硬件系统来辅助该目的。 但是,我们建议使用深度学习方法进行自动手语识别。 我们设计了一种基于ResNet50的新型2级深度神经网络体系结构来对拼写单词进行分类。 使用的数据集是标准的[1]的美国手语手势数据集。 首先使用各种扩充技术来扩充数据集。 在基于2级ResNet50的方法中,1级模型将输入图像分类为4组之一。 在将图像分类为一组图像之后,将其提供为相应的第二级模型的输入,以用于预测图像的实际类别。 我们的方法在12,048张测试图像上产生了99.03%的精度。
2022-12-04 13:33:12 549KB sign language recognition gesture
1
python毕业设计基于深度学习卷积神经网络的网站验证码识别研究与实现项目源码+全部数据.zip这是本科毕业设计的课题,“基于深度学习的网站验证码识别研究与实现”。主要是利用卷积神经网络,基于TensorFlow平台,构建了三层卷积两层全联接模型,训练出的一个准确率为91.3%的识别模型。再基于Django构建登陆系统,使用selenium实现自动测试,完成验证码从识别到自动登录的全过程。 python毕业设计基于深度学习卷积神经网络的网站验证码识别研究与实现项目源码+全部数据.zip这是本科毕业设计的课题,“基于深度学习的网站验证码识别研究与实现”。主要是利用卷积神经网络,基于TensorFlow平台,构建了三层卷积两层全联接模型,训练出的一个准确率为91.3%的识别模型。再基于Django构建登陆系统,使用selenium实现自动测试,完成验证码从识别到自动登录的全过程。 基于深度学习卷积神经网络的网站验证码识别研究与实现项目全部数据.zip 基于深度学习卷积神经网络的网站验证码识别研究与实现项目全部数据.zip 基于深度学习卷积神经网络的网站验证码识别研究与实现项目全部数据.zi
基于机器学习的雷达辐射源识别研究综述
2022-11-30 20:21:27 114KB 机器学习 大数据 雷达 识别
1
基于TensorFlow框架搭建卷积神经网络对电池片电致发光图像进行缺陷识别。选取公开的数据集,其中包含了电池片的不同种类缺陷。在传统的VGGNet网络的基础上使用全卷积神经网络进行训练,并分析不同损失函数和dropout概率在数据集上的训练效果。经过实验证明,该算法实现了对电池片是否有缺陷的准确识别。研究还得出压缩网络结构对算法训练速率能有大幅提升,这使得简化的模型更具有可迁移性,为大范围的实时缺陷识别提供了一种有效方案。
2022-11-29 21:02:22 418KB 电致发光
1
( 基于BP神经网络的脱机手写汉字识别研究.pdf
1
改进的EM-Xception人脸情绪识别研究
2022-11-15 21:30:55 1.32MB Xception 情绪识别 DeepLeaning
1
微博自媒体账号识别研究
2022-11-10 15:03:02 768KB 研究论文
1
如今,大量不同格式的异构数据可用于各种应用程序。 其中一个领域是犯罪调查。 在法医调查中,通常需要识别潜在指纹。 这种调查需要有效的计算方法。 随着现有存储技术的技术进步和局限性,需要有效的工具和技术来对庞大的数据集执行大数据分析和计算。 尽管大数据对法医专家来说是一个挑战,但它可以帮助他们检测犯罪模式,这是解决问题和了解现有情况的重要线索。 在本文中,我们使用 Apache Spark 分析了数据集中存在的潜在指纹图像。 这些实验有助于了解如何使用 SparkML 管道读取、处理和分析巨大的图像数据集。 此外,建议在现有框架上使用 Spark 中的深度学习改进识别和特征提取架构,以解决这一重要的研究问题。
2022-10-26 19:21:18 471KB 论文研究
1