高斯牛顿继承法matlab代码用于多摄像机和IMU校准的最小解算器 给定一个由三个带有相应IMU的摄像机组成的可移动装备,请使用IMU数据查找摄像机的位置和方向。 我们假设存在从摄像机到IMU的已知刚性转换。 这将基于Isaac Skog等人的先前工作。 [1]和HåkanCarlsson等。 [2]。 在[2]中,校准是使用坐标下降法结合经典的非线性最小二乘法进行的。 这些方法可能并不总是收敛或收敛缓慢。 在这个项目中,我们将研究是否可以通过使用动作矩阵方法(例如,参见Viktor Larsson的论文简介中的第7节)使解决方案更健壮和/或更快速。 通过这种方法,该问题可以转化为特征分解问题,对于该问题,存在快速的数值稳定求解器。 此外,此方法是不需要初始化的全局优化方法。 入门 所有代码都是用MATLAB编写的,可以在matlab文件夹中找到。 在该文件夹中, solveImuArray.m是作用矩阵求解器,将与solveImuArrayMl.m高斯-牛顿求解器solveImuArrayMl.m 。 可在tests文件夹中找到用于测试两个求解器的数值以解决各种噪声的脚本 初步结果
2024-05-03 17:53:12 235KB 系统开源
1
高斯牛顿迭代法matlab代码
2024-05-03 17:48:26 8KB 系统开源
1
高斯牛顿继承法matlab代码计算机图形学–质量弹簧系统 背景 阅读《计算机图形学基础知识》(第4版)的第16.5章。 读 质量弹簧系统 在此作业中,我们将考虑对可变形形状进行动画处理。 我们通过将形状视为和的网络来对形状的物理行为进行建模。 我们可以将形状视为每个顶点是一个点质量,每个边缘是一个弹簧的形状。 给定初始条件(每个点的起始位置和起始速度,如果有的话),我们将按照物理定律创建动画。 在现实世界中,物理学是确定性的:如果我们知道当前状态,就可以确定下一个状态是什么(至少在我们正在考虑的范围内)。 对于我们的物理模拟也是如此。 我们开始的定律是牛顿第二定律,该定律规定作用在物体上的力$ \ f∈\R³$必须等于其质量$ m $乘以其加速度$ \a∈\R³$: $$ \ f = m \ a。 $$ 注意$ \ f $和$ \ a $是向量,每个向量都有一个大小和一个方向。 我们将通过要求该方程对于我们网络中的每个点质量为真来构建我们的计算仿真。 作用在第i个点质量上的力$ \ f_i $只是来自任何入射弹簧边缘$ ij $和任何外力(例如重力)的力之和。 物理对象,我们说它们的势
2024-05-03 17:35:50 12.37MB 系统开源
1
基于粒子群算法优化深度置信网络(PSO-DBN)的数据回归预测,优化参数为隐藏层节点数目,反向迭代次数,反向学习率,利用交叉验证抑制过拟合问题,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-11 19:15:00 42KB 网络 网络
1
基于麻雀算法优化深度置信网络(SSA-DBN)的数据回归预测,优化参数为隐藏层节点数目,反向迭代次数,反向学习率,利用交叉验证抑制过拟合问题,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-11 19:12:59 42KB 网络 网络
1
动态规划算法求解TSP 用动态规划算法求解TSP,数据为Solomon数据集的c101文件读取,可视化路径图,用图展示每次迭代的最优值、最差值和平均值,并与Gurobi求解结果比较各计算时间下的目标值。动态规划算法求解TSP 用动态规划算法求解TSP,数据为Solomon数据集的c101文件读取,可视化路径图,用图展示每次迭代的最优值、最差值和平均值,并与Gurobi求解结果比较各计算时间下的目标值。动态规划算法求解TSP 用动态规划算法求解TSP,数据为Solomon数据集的c101文件读取,可视化路径图,用图展示每次迭代的最优值、最差值和平均值,并与Gurobi求解结果比较各计算时间下的目标值。动态规划算法求解TSP 用动态规划算法求解TSP,数据为Solomon数据集的c101文件读取,可视化路径图,用图展示每次迭代的最优值、最差值和平均值,并与Gurobi求解结果比较各计算时间下的目标值。动态规划算法求解TSP 用动态规划算法求解TSP,数据为Solomon数据集的c101文件读取,可视化路径图,用图展示每次迭代的最优值、最差值和平均值,并与Gurobi求解结果比较各计算时间下
2024-03-10 17:31:18 12KB 动态规划 数据集
1
用ACO解决TSP问题,数据为Solomon数据集的c101文件读取,可视化路径图,用图展示每次迭代的最优值、最差值和平均值,并与Gurobi求解结果比较各计算时间下的目标值。用ACO解决TSP问题,数据为Solomon数据集的c101文件读取,可视化路径图,用图展示每次迭代的最优值、最差值和平均值,并与Gurobi求解结果比较各计算时间下的目标值。用ACO解决TSP问题,数据为Solomon数据集的c101文件读取,可视化路径图,用图展示每次迭代的最优值、最差值和平均值,并与Gurobi求解结果比较各计算时间下的目标值。用ACO解决TSP问题,数据为Solomon数据集的c101文件读取,可视化路径图,用图展示每次迭代的最优值、最差值和平均值,并与Gurobi求解结果比较各计算时间下的目标值。用ACO解决TSP问题,数据为Solomon数据集的c101文件读取,可视化路径图,用图展示每次迭代的最优值、最差值和平均值,并与Gurobi求解结果比较各计算时间下的目标值。用ACO解决TSP问题,数据为Solomon数据集的c101文件读取,可视化路径图,用图展示每次迭代的最优值、最差值和平
2024-03-10 17:30:37 171KB 数据集 python
1
基于迭代学习控制的快速路交通控制现状与展望,孙何青,侯忠生,本文系统论述了基于迭代学习控制(ILC)的快速路交通控制的发展和研究现状。综述了从基于传统ILC的快速路交通控制方法到基于学习增强�
2024-03-03 10:29:35 334KB 首发论文
1
在Von-Mises屈服准则及正交流动准则的前提下,建立了循环载荷下叠加型A-F(Armstrong-Frederick)非线性随动强化模型的迭代算法,并根据塑性应变增量的收敛控制实现内部的平衡迭代。为验证本文数值方法的正确性,以Chaboche和Ohno-Abde-Karim随动硬化模型为例,将本文方法的计算结果与通用有限元软件ANSYS的分析结果及试验数据进行了比较,均吻合良好,验证了本文算法的可靠性。
2024-01-17 14:39:04 125KB 自然科学 论文
1
MITObim - 线粒体诱饵和迭代映射 版本 1.9.1(稳定 - 依赖于 MIRA 4.0.2)这个版本存档在 Zenodo 上: 1.6(稳定 - 依赖于 MIRA 3.4.1.1) 我们建议使用最新版本,但请参阅下面有关校对算法可用性的说明。 版权所有 Christoph Hahn 2012-2018 接触 我们鼓励用户将您对MITObim的任何疑问/意见/问题发布到我们的网上或。 或(在紧急情况下) 直接通过联系我。 我会尽量尽快回复你! 如果几天之内没有收到我的回音,请再发送一次提醒! 介绍 本文档包含有关如何使用 Hahn 等人中描述的 MITObim 管道的说明。 2013 年。完整的文章可以在找到。 如果您在工作中使用 MITObim,请引用这篇文章。 该管道最初是为Illumina数据开发的,但由于 MIRA 组装器的多功能性,MITObim 原则上也支持
2024-01-13 13:27:34 19.21MB Perl
1