从GCC编译器的体系结构出发,提出了GCC前后端分离的结构以适合移植到不同的硬件平台,分析了GCC后 端移植的关键技术。重点阐述后端移植所必须的文件,并详细说明这些文件的作用,给出了RTL中间语言的语法结构以及 典型指令的RTL指令模板结构。最后通过一个实例对移植到新硬件体系结构的GCC进行测试,结果表明针对特定的硬件 体系结构,GCC后端移植技术是可行的,能够产生正确的汇编语言代码。
2025-07-08 08:33:03 287KB
1
内容概要:现在前端开发安卓端大屏应用时,可能大部分人都会选择uniapp,当需要微信扫码登录,又苦于只能是原生安卓才能实现,针对无法使用原生安卓开发的人极其不友好,因此开发此插件帮助有需要的人。 适合人群:具备一定前端编程基础,工作。 扫码登录能力,指的是开发者可在移动应用内使用此能力,拉取二维码,用户使用微信客户端扫描二维码后可以登录此移动应用。此能力可被应用在多设备登录、智能硬件、电视盒子等场景。 在使用uniapp开发的安卓系统端的移动应用中,实现使用微信扫码登录的功能(主要)。 下载文件解压后,直接将文件夹放到nativeplugins文件夹汇总即可。按原生插件使用方法使用。也可以移步uni-app插件市场下载,链接为:https://ext.dcloud.net.cn/plugin?id=12243 该插件的实现基于微信官方文档https://developers.weixin.qq.com/doc/oplatform/Mobile_App/WeChat_Login/Login_via_Scan.html,需要后端配合使用。
2025-07-07 19:20:03 25KB 微信 android uniapp
1
基于SpringBoot+Vue+Element-UI的前后端分离学生信息管理系统
2025-07-07 15:42:46 470KB spring boot vue.js ui
1
**正文** 在本文中,我们将深入探讨如何使用Django Rest Framework(DRF)构建一个学生信息查询的RESTful API。RESTful API是一种遵循REST(Representational State Transfer)架构风格的Web服务设计,允许客户端和服务器之间进行高效、无状态的数据交换。 我们需要了解Django Rest Framework。DRF是基于Python的Django Web框架的一个强大扩展,专门用于构建API。它提供了一系列工具和功能,如序列化、身份验证、权限控制以及视图和路由器等,简化了API开发过程。 1. **项目设置** - 安装Django Rest Framework:使用pip安装`djangorestframework`库。 - 创建新的Django项目和应用:使用`django-admin startproject`和`python manage.py startapp`命令。 - 在项目的`settings.py`中,将`rest_framework`添加到`INSTALLED_APPS`列表中。 2. **模型(Models)** - 定义学生信息模型:在应用的`models.py`文件中创建一个名为`Student`的模型,包含字段如`id`, `name`, `age`, `major`等。 3. **序列化(Serializers)** - 创建序列化器:在应用的`serializers.py`文件中,定义一个`StudentSerializer`类,继承自`serializers.ModelSerializer`,将模型的字段映射到JSON格式。 4. **视图(Views)** - 视图函数:创建视图函数,如`student_list`和`student_detail`,用于处理GET请求,获取学生列表或单个学生信息。可以使用DRF的`ListAPIView`和`RetrieveAPIView`来简化这个过程。 - 使用`@api_view`装饰器:对于POST、PUT、DELETE等其他HTTP方法,可以定义装饰器处理的视图函数。 5. **路由(URLs)** - 配置URLs:在应用的`urls.py`文件中,为视图函数定义URL模式,并在项目的`urls.py`中包含这些模式。使用DRF的`router`类可以更方便地管理多个视图。 6. **权限和认证(Authentication & Permissions)** - 默认权限:DRF提供了多种权限策略,如`IsAuthenticated`,确保只有已认证的用户才能访问API。 - 自定义权限:如果需要,可以创建自己的权限类以满足特定需求。 - 身份验证:DRF支持多种身份验证策略,如Basic Auth、Token Auth等,根据项目需求选择合适的策略。 7. **测试** - 使用DRF提供的测试工具对API进行单元测试和集成测试,确保其功能正常。 8. **文档** - 自动文档:通过`rest_framework.documentation`模块,可以轻松地为API生成交互式的Swagger或ReDoc文档,方便开发者理解和使用。 9. **前端集成** - 前后端分离:前端可以通过发送HTTP请求与后端API通信,例如使用React、Vue.js等前端框架。前端需要处理API返回的数据并展示给用户。 通过以上步骤,我们就可以使用Django Rest Framework实现一个完整的学籍查询RESTful API。在实际开发中,你可能还需要考虑性能优化、错误处理、数据过滤、分页等功能,这些都是构建高质量API的重要组成部分。记住,良好的API设计应遵循REST原则,保持简洁、一致且易于理解。
2025-07-06 22:19:14 50KB django restful python 前后端分离
1
小程序进销存管理系统多用户多仓库,uniapp源码可生成H5页面和APP,前后端全开源 功能 1、支持采购单录入、审核、入库、 等采购过程中的记录追踪 2、支持销、出库、销审核、出库审核、 等跟踪 3、支持产品出库、入库的数据导出 4、支持用户、仓库等管理 进销存管理系统,顾名思义,是用于管理企业进(采购)、销(销售)、存(库存)的系统。一个高效的小程序进销存管理系统,能够在企业日常运营中发挥关键作用,提升工作效率,减少资源浪费,确保数据的准确性和业务流程的规范化。从给定的文件信息中可以看出,本系统支持多用户和多仓库的操作模式,并且提供了前后端全开源的源码,以及能生成H5页面和APP的功能,为不同规模的企业提供了灵活的应用选择。 具体来说,系统具备如下功能特点: 1. 采购管理功能:系统能够支持采购单的录入、审核、以及入库操作。这意味着用户能够记录采购过程中的每一项操作,并且对整个采购流程进行追踪,确保采购的物品能够及时准确地入库,满足企业运营需求。 2. 销售和出库管理功能:系统同样支持销售和出库的流程,包括销售操作、出库操作、销审核和出库审核。这些功能确保了销售活动的顺利进行,同时对销售和出库的过程进行了详细的记录和管理,有助于跟踪产品流向和销售情况。 3. 数据导出功能:该系统支持产品出库、入库数据的导出功能。数据导出是数据分析和决策的重要基础,企业可以据此导出相关数据进行分析,从而优化库存管理和销售策略。 4. 用户和仓库管理功能:系统提供了用户和仓库的管理功能,能够对不同的用户角色进行设置,并且管理不同仓库的信息。这有助于实现精细化的权限控制和仓库资源的有效分配。 除了上述功能,根据文件名称列表,我们可以发现文档内容可能包含了系统的实现方法、操作指导、源码解析和应用案例等详细信息,这有助于用户深入理解系统的工作原理和操作方式。 在技术实现方面,系统采用了uniapp框架,这意味着它具有跨平台的优势,能够同时在多个操作系统上运行,增加了应用的便捷性和可访问性。源码的开源特性使得企业能够根据自己的需求进行二次开发,从而更好地适应业务变化。而H5页面和APP的生成能力,让系统不仅限于小程序使用,提供了更为丰富的应用场景和用户界面。 从标签“gulp”可以推断,系统可能使用了gulp这一前端构建工具,它被广泛用于自动化处理一些前端工作,比如压缩、合并文件,提高开发效率。 小程序进销存管理系统通过其全面的功能支持、开源的代码资源、多平台的应用能力以及灵活的用户和仓库管理,能够为各种规模的企业提供一个高效、便捷、可扩展的进销存解决方案。
2025-07-06 18:54:52 795KB gulp
1
若依框架RuoYi-Vue前后端分离118集,仅供参考学习
2025-07-04 16:36:56 75B vue.js
1
### LEF文件提取流程详解——IC后端设计关键步骤 #### 概述 在集成电路(IC)设计领域,特别是后端设计过程中,LEF(Library Exchange Format)文件扮演着极其重要的角色。它不仅包含了器件的基本信息,还涉及到了布局布线的关键数据。本文将详细介绍通过Abstract Generator提取LEF文件的具体流程,包括Pin Step、Extract Step和Abstract Step三个核心步骤,旨在帮助读者深入理解LEF文件的提取机制及其在IC设计中的应用。 #### Pin Step:引脚信息的确定 Pin Step是提取过程的第一步,其主要任务是将标签映射到相应的引脚,并创建布局布线的边界。这一阶段需要关注四个主要的选项卡: 1. **The Map Tab**:负责将特定的标签映射到对应的引脚。 2. **The Text Tab**:虽然通常可以采用默认设置,但在某些情况下可能需要调整以满足特殊需求。 3. **The Boundary Tab**:此选项卡用于定义布局的边界。需要注意的是,版图每边的最外边界的图层都必须包含在Using geometry on Layers中定义。 4. **The Blocks Tab**:同样,这块也可以采用默认设置,除非有特殊需求。 **注意事项**:在设置The Boundary时,需要注意PR边界是一个较为抽象的矩形边界,仅基于最外围的图层定义,无法准确反映版图的真实形状。为了更好地模拟实际版图形状,可以在Abstract Step中的overlap选项中进行进一步的设置。 #### Extract Step:网络信息提取与数据建模 在Extract Step中,主要任务是提取与终端引脚相连的线网信息,并为后续的数据建模做好准备。这一阶段包括以下几个重要步骤: 1. **The Signal Tab**:主要用于控制需要提取的信号图层信息。需要注意的是,在Pin step中只能提取与特定标签相关的图层信息。若需提取更多相关信息,则需在此处选择Extract signals nets选项,并定义相关的图层。此外,还需注意Maximum depth、Maximum distance和Minimum width等参数的设定,这些参数会影响提取的范围和精度。 2. **The Power Tab**:用于定义提取的电源地网格图层信息。其参数设定与The Signal Tab相似。 3. **The Antenna Tab**:主要用于定义提取天线效应相关的信息。 4. **The General Tab**:用于定义不同图层之间的连接关系。例如,通过(METAL1 METAL2 V12)这样的语法定义图层间的垂直连接关系。根据bin的属性(Core或Block),The Signal Tab和The Power Tab中的选项可能会有所不同,默认开启或关闭的状态也会有所差异。 #### Abstract Step:高级配置与细节优化 最后一步是Abstract Step,主要涉及对LEF文件进行更高级别的配置和细节优化。这一阶段有两个关键选项卡: 1. **The Blockage Tab**:此选项卡允许用户控制如何处理布局中的障碍物。具体来说,Blockage选项有三种不同的设置: - **Cover**:在希望改善性能的同时避免使用版图中剩余的布线通道时,可以选择Cover。这会导致LEF视图不使用原有版图中的剩余布线资源,而倾向于使用更高层的布线层。对于属性为Block的情况,默认选择Cover。 - **Detailed**:此选项确保LEF视图能够完全反映版图中的所有细节信息。在Encounter中,这意味着能够利用剩余的布线通道。对于属性为Core的情况,默认选择Detailed。 - **Shrink**:在提取过程中自动填充较小的间隙,只保留较大的块信息。具体的控制方式由Shrink Dist和Shrink Tracks决定。 2. **The Overlap Tab**:用于定义LEF文件中的LAYER OVERLAP信息。如果定制部分的版图不规则,需要按照实际情况提取版图形状时,可以通过此选项卡定义需要按实际情况提取的图层名称,从而在后端布局时能够更准确地反映实际情况。 #### 结论 通过上述三个步骤的详细解析,我们可以看到,LEF文件的提取是一个既复杂又细致的过程,涉及到多个方面的考虑和调整。正确地执行这三个步骤,不仅可以提高IC设计的整体质量,还能显著提升布局布线的效率。对于从事IC设计的专业人员而言,掌握这些关键步骤是非常必要的。
2025-07-04 15:54:54 1.01MB
1
该demo基于vue-cli3.0,可以用于移动端的多页面开发 vue-cli3.0是最新版本的vue官方脚手架,有着很多新功能以及简单的目录结构,详情请参考 同时,项目使用vw进行移动端适配,viewport如今已被大多数浏览器兼容。关于vue适配vw,详情可看《》 npm install //安装依赖 npm run serve //运行 vue-cli3.0的源码中,已经自带多页面配置的源码了。在文档中,也明确说明可以直接在pages属性上进行配置。 在根目录新建vue.config.js配置文件,这样配置即可。 module.exports = { pages: { index: { // entry for the page entry: 'src/index/index.js', // the source template
2025-07-03 14:51:43 80KB JavaScript
1
在Android平台上,开发移动应用时有时需要获取设备的物理MAC(Media Access Control)地址,这在设备定位、网络连接管理或者其他需要唯一标识设备的场景中非常有用。MAC地址是网络接口控制器(NIC)的硬件地址,它在通信过程中用于唯一识别网络节点。然而,由于隐私保护原因,Android系统在不同版本中对直接获取MAC地址做了限制。 在“Android 移动端获取设备MAC Demo”中,我们将探讨如何在Android系统中,特别是在Android 8.0之前,有效地获取和使用MAC地址。以下是一些关键知识点: 1. **Android权限**:在Android 6.0(API级别23)及以上版本,获取MAC地址需要申请`ACCESS_WIFI_STATE`权限。在AndroidManifest.xml文件中添加如下代码: ```xml ``` 2. **WiFiManager**:Android提供了一个名为`WifiManager`的系统服务,可以用来获取WiFi相关的信息,包括MAC地址。通过`Context.getSystemService(Context.WIFI_SERVICE)`可以获取到`WifiManager`的实例。 3. **获取MAC地址**:在Android 8.0之前,可以直接通过`WifiManager`的`getMacAddress()`方法获取MAC地址。示例代码如下: ```java WifiManager wifiManager = (WifiManager) getSystemService(WIFI_SERVICE); String macAddress = wifiManager.getConnectionInfo().getMacAddress(); ``` 4. **Android 8.0及之后的限制**:从Android 8.0(API级别26)开始,系统返回的`getMacAddress()`会是`null`或一个随机值,因为出于隐私考虑,系统不再允许应用程序直接访问真实的MAC地址。开发者需要寻找替代方案,如使用`BluetoothAdapter`的`getAddress()`来获取蓝牙MAC地址,但请注意蓝牙MAC地址并不能完全代替WiFi MAC。 5. **模拟MAC地址**:在无法直接获取MAC地址的情况下,可以考虑使用设备的IMEI(国际移动设备识别码)或其他系统唯一标识符作为替代。不过,IMEI也需要`READ_PHONE_STATE`权限,并且在某些设备上可能不可用。 6. **WIFI状态检查**:在获取MAC地址之前,可能需要确保WiFi处于开启状态。可以通过`WifiManager.isWifiEnabled()`来检查,如果关闭则可以使用`WifiManager.setWifiEnabled(true)`尝试开启。 7. **处理异常情况**:考虑到权限问题和Android版本差异,代码中应该包含异常处理和适配逻辑,确保在各种情况下程序都能稳定运行。 在“GainMac”这个项目中,很可能包含了实现上述功能的源代码示例,你可以通过阅读和学习这些代码来了解如何在实际项目中应用这些知识点。通过这个Demo,开发者可以理解如何在Android环境下优雅地处理MAC地址的获取和使用,以及在新版本系统中的适应性调整。
2025-07-03 11:22:16 12.2MB Android 通用获取mac 获取mac 物理mac
1
在Linux操作系统中,TCP(传输控制协议)是网络通信中常用的一种面向连接的、可靠的、基于字节流的传输层通信协议。TCP通信通常用于需要稳定性和数据完整性的重要应用,如网页浏览、电子邮件和文件传输等。本压缩包提供了一份在Linux环境下实现TCP通信的示例代码,包括服务端和客户端的实现。 服务端实现: 服务端程序是TCP通信的起点,它创建一个监听套接字,并绑定到特定的IP地址和端口号上。通过调用`socket()`函数创建套接字,`bind()`函数绑定地址,`listen()`函数开始监听连接请求。当有客户端请求连接时,服务端通过`accept()`函数接受连接,并创建一个新的套接字与客户端进行通信。在此过程中,服务端可以接收并处理来自客户端的数据,也可以向客户端发送数据。 客户端实现: 客户端首先也需要创建一个套接字,然后通过`connect()`函数尝试连接到服务端指定的IP地址和端口。一旦连接建立成功,客户端就可以通过这个套接字向服务端发送数据,并接收服务端返回的数据。在完成通信后,客户端通常会关闭连接。 TCP通信的核心概念: 1. 连接:TCP是面向连接的协议,即在通信前,客户端和服务器必须先建立连接。这通常涉及到三次握手的过程。 2. 可靠性:TCP提供了序列号和确认机制,确保数据按照正确的顺序到达且无丢失,即使在网络不稳定的情况下。 3. 流量控制:TCP通过滑动窗口机制控制数据发送速率,避免接收方无法处理过多数据导致拥塞。 4. 拥塞控制:当网络出现拥塞时,TCP会自动调整其发送速率,以减轻网络压力。 5. 半关闭状态:通信结束后,双方都可以发起关闭连接的请求,形成四次挥手的过程。在完全关闭之前,一方可以继续发送数据,而另一方只接收不发送。 这份代码示例可以帮助开发者理解和学习如何在Linux环境下使用C语言或者C++实现TCP通信,这对于系统编程、网络编程的学习和实践非常有价值。通过阅读和运行这些代码,你可以了解到TCP通信的基本流程、套接字API的使用以及错误处理的方法。 总结: 这个压缩包提供的Linux下TCP通信测试代码,是一个很好的学习资源,涵盖了TCP服务端和客户端的基本操作,包括连接建立、数据交换和连接关闭。通过实际操作,开发者能够深入理解TCP协议的工作原理及其在Linux环境中的实现细节。对于想要提升网络编程技能的IT从业者来说,这是一个不可或缺的实践素材。
2025-07-02 13:33:15 10KB
1