EM(expectation-maximization)算法是Dempster,Laird和Rubin(DLR)三个人在1977年正式提出的.主要是用于在不完全数据的情况下计算最大似然估计。ppt中包含以下内容: 算法介绍 EM算法 GEM算法性质 EM算法解释 EM不足及改进 作者:尤全增 ultimateyou@gmail.com
2022-11-05 20:58:12 520KB 模型参数估计
1
利用白噪声特性和ARMR模型,通过求解模型参数生成随机风速 程序完整!!! 值得参考!!!
2022-11-04 18:05:03 48KB 白噪声 ARMA 随机风速 MATLAB
1
离散控制Matlab代码潜在Alpha模型估算代码的文档 作者: Philippe Casgrain 电子邮件: MATLAB和C代码的此集合可用于通过EM算法估算纯跳跃潜在alpha模型中的参数。 有关这些模型和估计算法以及它们在算法交易中的使用的更多信息,请参见[^ fn1]。 注意:在此存储库中找到的许多C代码都是基于的经典HMM的Forward-Backward算法的C / mex实现。 该算法的原始代码以及不同实现方式的比较。 价格过程模型 我们考虑资产价格过程$ S_t $的连续时间模型,该模型由潜在的隐马尔可夫链$ \ Theta $驱动。 我们假设此特定模型的动力学表示为$$ dS_t = \ delta \ left(dN_t ^ +-dN_t ^-\ right); $ $$,其中$ \ delta> 0 $表示刻度尺寸,而$ N_t ^ \ pm $是具有相应随机强度$ \ lambda_t ^ {\ pm} $的泊松过程。 我们假设强度过程采用如下形式$ $$ \ lambda_t ^ {\ pm} = \ sigma + \ kappa(\ Theta_t-S
2022-10-28 21:51:10 1.71MB 系统开源
1
经典地球物理反演理论书籍,作者塔兰托拉,1987年中文版 适合各行业从事反演问题研究的人参考学习
2022-09-27 16:24:19 7.22MB 反演理论 数据拟合 参数估计
1
Inverse Problem Theory and Methods for Model Parameter Estimation (模型参数估计的反问题理论与方法) 作者:(意大利)(Albert Tarantola)塔兰托拉 PDF格式,英文。
1
  深度神经网络(DNN)在各种任务中取得了前所未有的成功,但是,这些模型性能直接取决于它们的超参数的设置。在实践中,优化超参数仍是设计深度神经网络的一大障碍。在这项工作中,我们建议使用粒子群优化算法(PSO)来选择和优化模型参数。在MNIST数据集上的实验结果显示:通过PSO优化的CNN模型可以得到不错的分类精度,此外,PSO 还可以提高现有模型结构的性能,PSO是自动化超参数选择和有效利用计算资源的有效技术。 针 对CNN 算法的收敛速度较慢、过 拟合 等问题, 文章提出一种基于PSO和 CNN 模型的图像分类方法,在分析完CNN各超参数对其性能的影响后,引入 PSO 算法进行寻优以增强CNN网络模型的特征提取能力,模型将CNN算法中需要训练的参数作为粒子进行优化,将 更 新 的 参 数 用 于CNN 算 法 的 前 向 传播,调整网络连接权矩阵迭代,直到误差收敛,停止算法,以达到最终的模型优化。
2022-08-08 11:05:49 12KB PSO-CNN PSO CNN PSO优化CNN参数
1
COCA模型参数,预训练模型
2022-08-06 12:05:13 747.87MB NLP
1
列控模型参数辩识及其在线学习算法研究.pdf
2022-07-11 09:10:56 9.07MB 文档资料
人工智人-家居设计-层流冷却过程控制模型参数智能优化策略及应用研究.pdf
2022-07-04 11:03:29 1.8MB 人工智人-家居
人工智能-基于BP神经网络的高填石路堤本构模型参数识别及应用研究.pdf
2022-06-27 19:10:36 18.9MB 人工智能-基于BP神经网络的高填