旨在捕获、建模和预测股票行为的学术项目
2022-05-01 00:15:56 4KB matlab
1
安全技术-网络信息-模糊神经网络在股票价格短期预测中的应用研究.pdf
2022-04-28 19:00:32 2.65MB 神经网络 文档资料 安全 网络
主要是输入股票代码,然后运行后有持续的价格刷新播报,适合盲人或者眼睛容易疲劳的人使用。语音是女性。
2022-04-15 09:07:23 884KB 股票播报 股价播报 股价监控
1
关于股票价格预测和变化的系统,有源代码,可以添加、删除自选股等等
2022-04-14 10:26:12 168KB 股票价格系统
1
【达摩老生出品,必属精品,亲测校正,质量保证】 资源名:MATLAB实现股票价格预测 源程序代码.rar 资源类型:matlab项目全套源码 源码说明: 全部项目源码都是经过测试校正后百分百成功运行的,如果您下载后不能运行可联系我进行指导或者更换。 适合人群:新手及有一定经验的开发人员
为解决传统隐马尔可夫股价行为预测模型对输入特征序列和隐含状态数目敏感,导致预测结果存在局部最优、误差较大的问题,设计了新的股票因子特征选择方法,包括对因子特征的筛选和特征数据预处理。结合贝叶斯信息规则确定模型最佳隐含状态数目,提出了一种优化股价行为预测性能的PRHMM模型。通过对比支持向量机、ARIMA模型,实验结果证明,所提出的预测算法相对传统预测模型,在股价行为预测中有更好的预测表现。
2022-03-30 13:33:42 253KB 隐马尔可夫模型
1
可以实时获取股票数据,VBA编写的,非常实用。
2022-03-21 17:30:38 163KB 实时 价格
1
递归神经网络预测Google股票价格 我试图使用LSTM预测Google股票价格 长短期记忆(LSTM)单元(或块)是递归神经网络(RNN)层的构建单元。 由LSTM单元组成的RNN通常称为LSTM网络。 常见的LSTM单元由单元,输入门,输出门和忘记门组成。 该单元负责在任意时间间隔内“记住”值。 因此,LSTM中的“内存”一词。 就像多层(或前馈)神经网络中一样,这三个门中的每一个都可以被认为是“常规”人工神经元:也就是说,它们计算加权和的激活(使用激活函数)。 从直觉上讲,它们可以看作是通过LSTM连接的值流的调节器。 因此表示“门”。 这些门与单元之间存在连接。 更好的预测模型的结果是:
2022-03-19 15:06:49 690KB google prediction recurrent-neural-networks lstm
1
股票预测 LSTM模型预测股票价格
2022-02-21 20:32:36 1KB
1
股票买卖最佳时机leetcode 项目前提 该项目探索了使用监督式机器学习模型以基本面和技术分析数据作为输入可以预测未来股票价格的程度。 该项目旨在确定哪种监督机器学习模型,从时间序列多线性回归 (TS-MLR)、循环神经网络 (RNN) 到长短期记忆 (LSTM),可以以最低的根预测未来股票价格均方误差 (RMSE)。 在这样做的过程中,我们进行了降维和特征选择,深入了解了对预测未来股票价格特别重要的基本面和技术分析数据的类别。 这种洞察力可以整合到选股策略中,并为买卖股票的理想时机提供基准。 该项目将 LSTM 列为表现最佳的机器学习模型,预测未来一个月收盘价的平均 RMSE 为 8.03,预测未来六个月收盘价的平均 RMSE 为 13.45。 动机 投资股票市场往往是最不稳定的投资类型。 因此,我们的项目探索了最小化此类波动的方法之一——分析公司数据以发现股票价格变化的可能趋势。 在此过程中,我们的项目希望这些趋势能够帮助提高投资者的确定性。 理想情况下,最好(最小 RMSE)模型将允许投资者从投资中获利并“击败市场”。 我们项目的意义有两个方面。 首先,它提供了对影响股票价格
2022-01-13 19:44:05 55.59MB 系统开源
1