内容概要:本文介绍了TruckSim8×8轮式装甲车辆仿真模型及其与MATLAB联合仿真的应用。该模型基于驾驶员预瞄的双移线工况,初始车速设为70kph,旨在验证装甲车辆的控制算法。模型包含TruckSim装甲车辆模型4A_WMV.cpar文件、8×8轮式装甲车辆的3D模型(.obj和.fbx格式),并提供软件安装包和详细操作教程。仿真工况的选择能够模拟复杂的驾驶环境,如转弯和变道,有助于观察和分析车辆在高速情况下的性能表现。 适用人群:从事装甲车辆研究、教学、娱乐领域的研究人员、教师、开发者和技术爱好者。 使用场景及目标:① 验证装甲车辆的控制算法;② 教育领域中用于车辆动力学的教学和培训;③ 娱乐领域中用于开发坦克类游戏,提供真实的驾驶体验。 其他说明:文中还展示了简单的MATLAB代码片段,演示了如何初始化、启动和执行TruckSim仿真过程。用户可以根据具体需求编写相应代码,进一步优化仿真效果。
2025-09-19 21:27:43 583KB MATLAB 3D模型
1
内容概要:本文详细介绍了8×8轮式装甲车辆在TruckSim中的仿真模型构建与操作流程,涵盖模型文件解析、三维建模、轮胎参数设定、联合仿真接口配置以及预瞄算法优化等方面。文中强调了关键参数如轴距、轮胎属性、悬挂系统等的具体配置,并提供了MatLAB联合仿真的具体实现方法,包括S-function回调函数的应用、预瞄参数调整、PID控制器及模型预测控制(MPC)的使用。此外,还分享了一些实用技巧,如初始化脚本运行、仿真步长设置、3D模型导入注意事项等。 适用人群:从事车辆仿真研究的技术人员,尤其是关注装甲车辆性能评估与控制算法验证的研究者。 使用场景及目标:适用于希望深入了解并掌握8×8轮式装甲车辆仿真技术的专业人士,旨在帮助他们完成高质量的仿真项目,提高仿真精度和效率。 其他说明:文中提供的实例和代码片段有助于读者更好地理解和应用相关技术和工具,同时附带的操作指南和避坑建议能够有效减少初学者的学习成本和技术障碍。
2025-09-19 21:27:03 584KB
1
TruckSim8×8轮式装甲车辆坦克仿真模型,包跑通含; 【项目介绍】 -TruckSim2019.0 -仿真工况选择基于驾驶员预瞄的双移线工况 -初始车速70kph -该模型可与MATLAB联合仿真,用于后续装甲车辆控制算法验证 【打包文件包括】 -TruckSim装甲车辆模型4A_WMV.cpar -8×8轮式装甲车辆3D模型(包括.obj和.fbx模型) -提供软件安装包 -提供一步步操作模型使用教程文档 本文详细介绍了TruckSim8×8轮式装甲车辆坦克仿真模型,该模型采用了TruckSim2019.0版本,设计了基于驾驶员预瞄的双移线工况作为仿真工况选择,并设定了初始车速为70kph。模型的一个重要特性是可以与MATLAB软件进行联合仿真,这对于后续装甲车辆控制算法的验证具有重要意义。 仿真模型的打包文件内容非常丰富,包括了TruckSim装甲车辆模型文件、3D模型文件(含有.obj和.fbx格式),为用户提供了完整的软件安装包,并且配备了详细的操作模型使用教程文档。这些内容的设计旨在帮助用户能够更加便捷和高效地理解和使用该仿真模型。 模型的3D设计部分包含了一系列的视觉资源,比如.obj和.fbx格式的模型文件,这些文件可以被广泛应用于3D可视化和动画制作中。轮式装甲车辆的3D模型不仅是技术仿真的重要组成部分,而且对于制作逼真的虚拟战场环境也具有不可忽视的作用。 此外,打包文件还包括了详细的操作指南文档,这些文档对于初学者和有经验的用户同样适用。用户通过阅读文档,可以一步步学习如何安装和操作仿真模型,这在一定程度上降低了学习和使用门槛,提升了模型的可访问性。 在文档方面,该仿真模型的打包文件中包含了多个文档,如技术分析文章、项目分析、模型使用教程以及项目介绍等。这些文档覆盖了从模型设计、功能介绍、操作步骤到技术细节等多方面的内容,为用户提供了一个全面了解和学习该仿真模型的平台。 TruckSim8×8轮式装甲车辆坦克仿真模型是一项技术集成度高、操作简便、功能全面的仿真工具。它不仅能够为装甲车辆控制算法的开发和测试提供一个有效的实验平台,同时也为装甲车辆设计、虚拟战场模拟等应用提供了有力的支持。通过该仿真模型,开发者和工程师能够在一个虚拟的环境中对装甲车辆的性能进行详尽的分析和评估,从而加速技术迭代和产品优化过程。
2025-09-19 21:25:12 204KB kind
1
基于Matlab的高速铁路三维车轨耦合振动程序:车辆-轨道结构空间耦合模型动力学求解与不平顺激励研究,基于Matlab的高速铁路三维车轨耦合振动程序:车辆-轨道结构空间耦合模型动力学求解与不平顺激励分析,高速铁路matlab车轨耦合 车辆-轨道结构耦合振动程序 三维车轨耦合程序 代码,车辆-轨道空间耦合模型动力学求解matlab,可加不平顺等激励 基于空间三维车辆下的车轨耦合,用matlab程序实现 ,关键词: 1. 高速铁路 2. 车轨耦合 3. 车辆-轨道结构耦合振动 4. MATLAB程序 5. 空间三维耦合模型 6. 动力学求解 7. 可加不平顺激励 以上关键词用分号分隔为:高速铁路;车轨耦合;车辆-轨道结构耦合振动;MATLAB程序;空间三维耦合模型;动力学求解;可加不平顺激励。,Matlab车辆轨道空间三维耦合振动程序
2025-09-19 11:09:20 1.05MB 柔性数组
1
表 3.7 错误类型举例 错误类型 解释 位错误 通常,在一个时刻,LIN 总线上只有一个节点在向外发送信息,发送的同时回读总线上的 数据,当发送节点发送电平与回读电平不一致时,视为位错误。(事件触发帧的总线冲突 除外,参照 3.2.2 节)。 同步段错误 根据接收的同步段重新计算的位速率超出了规定的容限(参照 4.6 节的表 4.3),认为是同 步段错误。 PID 错误 接收节点对帧 ID(PID 的前六位)按照校验规则重新计算校验位(P0 和 P1),若与接收到的 校验位不符,则接收节点认为是 PID 传输错误。 无应答错误 发送完帧头后,如果总线上没有节点应答,视为无应答错误(事件触发帧除外)。 应答不完整错误 收听节点接收的数据段不完整或没有接收到校验和段。 校验和错误 收听节点接收到的校验和与重新计算的校验和(不取反)加起来不等于 0xFF。 帧错误 字节域的停止位上出现了显性电平。 物理总线错误 总线短路或直接连到电源上导致总线无法通信,该错误由主机节点负责检测。 3.6.2 节点内部报告 节点自身需要设定两个状态位:Error_in_response 和 Successful_transfer。当发送或接收应答的时候发现错 误,将置位 Error_in_response;成功传输则置位 Successful_transfer。节点需要将这两个状态位报告给应用层。
2025-09-18 15:10:00 1.9MB
1
近年来,随着自动驾驶技术的快速发展,对车辆行为理解的准确性提出了更高的要求。其中,车辆换道行为作为道路交通中常见的复杂动态行为,成为了研究的热点。基于GCN-Transformer的车辆换道行为建模与轨迹预测方法,结合了图卷积网络(GCN)和Transformer模型的优势,提出了一种新颖的解决方案,旨在提高预测的准确性和实时性。 图卷积网络(GCN)在处理非欧几里得数据方面表现卓越,尤其适合处理图结构数据。在车辆换道行为建模中,GCN可以有效地捕捉车辆与周围车辆之间的空间关系和交互作用。通过图结构表示交通网络,GCN能够对车辆之间的相对位置、速度和加速度等动态特征进行编码,从而学习到车辆行为的局部特征表示。 Transformer模型最初被设计用于自然语言处理(NLP)领域,尤其是序列到序列的学习任务。Transformer的核心在于自注意力(Self-Attention)机制,该机制能够让模型在处理序列数据时,考虑到序列内各元素之间的长距离依赖关系,这对于序列预测问题来说至关重要。在车辆换道预测任务中,Transformer可以帮助模型捕捉时间序列上的特征,如车辆的历史轨迹、速度变化趋势等,从而生成更准确的未来轨迹预测。 结合GCN和Transformer,研究人员提出了多种方法来优化车辆换道行为的建模与轨迹预测。一种常见的方法是将GCN用于构建车辆之间相互作用的图结构,然后利用Transformer来处理时间序列数据。GCN负责编码车辆之间的空间关系,而Transformer则关注于时间序列的动态变化。此外,研究人员还可能引入注意力机制来进一步优化模型的性能,使得模型在预测时更加关注与换道行为相关的车辆和其他环境因素。 在实际应用中,基于GCN-Transformer的模型能够为车辆提供连续的轨迹预测,这对于提高自动驾驶系统的决策能力至关重要。通过提前预知周围车辆的潜在换道行为,自动驾驶车辆可以更好地规划自己的行驶路线和行为,从而提高道路安全性和交通流的效率。 此外,基于GCN-Transformer的模型在处理大规模交通场景时表现出色。大规模交通网络中包含成千上万辆车,这些车辆的轨迹和行为相互影响,形成复杂的动态系统。GCN能够有效地处理这种大规模网络中的信息,而Transformer则保证了对长时间序列的分析能力。因此,该方法对于理解和预测复杂交通场景中的车辆行为具有重要的应用价值。 基于GCN-Transformer的车辆换道行为建模与轨迹预测方法,通过结合空间关系建模能力和时间序列分析能力,为车辆换道预测提供了一种强大的技术手段。这种技术不仅能够提升自动驾驶系统的性能,还能在智能交通管理和城市规划等领域发挥重要作用。
2025-09-16 19:38:54 3.62MB
1
基于Carsim与Simulink联合仿真的分布式驱动车辆状态估计模型研究:轮胎力观测与UKF SRCKF算法的鲁棒性提升,基于Carsim和Simulink联合仿真的分布式驱动车辆状态精确估计模型:UKF SRCKF算法与ASMO轮胎力观测器的融合应用,【 分布式驱动车辆状态估计模型】基于Carsim和simulink联合仿真,首先建立分布式驱动车辆轮毂电机模型,并使用pid对目标速度进行跟踪,随后在使用级联滑模观测器(ASMO)和车轮运动模型对轮胎力进行观测的基础上,使用UKF SRCKF算法对侧向车速,纵向车速,横摆角速度,质心侧偏角进行估计。 不同于基于七自由度模型的状态估计的是使用轮胎力观测器代替建立轮胎模型,防止迭代形式的误差累积(轮胎模型需要估计量作为输入,估计不准轮胎模型的输出相应误差就大);此外为了解决Cholesky分解只能处理正定矩阵的问题,使用Utchol分解法在不影响估计效果的同时提升算法的鲁棒性。 ,核心关键词:分布式驱动车辆;状态估计模型;Carsim和simulink联合仿真;轮毂电机模型;PID控制;级联滑模观测器(ASMO);UKF SRCKF算法
2025-09-15 10:48:38 2.74MB scss
1
四轮轮毂电机驱动车辆横摆力矩与转矩矢量分配控制仿真研究:滑模与PID联合控制策略及力矩分配方法探究。,四轮轮毂电机驱动车辆DYC与TVC系统分层控制策略仿真研究:附加横摆力矩与转矩矢量分配控制方法探索。,四轮轮毂电机驱动车辆直接横摆力矩控制(DYC),转矩矢量分配(TVC)的仿真搭建和控制 整体采用分层控制策略。 其中顶层控制器的任务是利用车辆状态信息、横摆角速度以及质心侧偏角的误差计算出维持车辆稳定性的期望附加横摆力矩。 为了减少车辆速度影响,设计了纵向速度跟踪控制器;底层控制器的任务是对顶层控制器得到的期望附加横摆力矩以及驱动力进行分配,实现整车在高速地附着路面条件下的稳定性控制。 顶层控制器的控制方法包括:滑模控制(SMC)、LQR控制、PID控制、鲁棒控制(发其中一个,默认发滑模和pid控制器)等。 底层控制器的分配方法包括:平均分配、最优分配,可定制基于特殊目标函数优化的分配方法(默认发平均分配)。 说明:驾驶员模型采用CarSim自带的预瞄模型(Simulink驾驶员模型请单独拿后);速度跟踪可加可不加,采用的是PID速度跟踪控制器。
2025-09-11 14:14:17 1.52MB 开发语言
1
四轮轮毂电机驱动车辆直接横摆力矩控制(DYC),转矩矢量分配(TVC)的仿真搭建和控制 整体采用分层控制策略。 其中顶层控制器的任务是利用车辆状态信息、横摆角速度以及质心侧偏角的误差计算出维持车辆稳定性的期望附加横摆力矩。 为了减少车辆速度影响,设计了纵向速度跟踪控制器;底层控制器的任务是对顶层控制器得到的期望附加横摆力矩以及驱动力进行分配,实现整车在高速地附着路面条件下的稳定性控制。 顶层控制器的控制方法包括:滑模控制(SMC)、LQR控制、PID控制、鲁棒控制(发其中一个,默认发滑模和pid控制器)等。 底层控制器的分配方法包括:平均分配、最优分配,可定制基于特殊目标函数优化的分配方法(默认发平均分配)。 说明:驾驶员模型采用CarSim自带的预瞄模型(Simulink驾驶员模型请单独拿后);速度跟踪可加可不加,采用的是PID速度跟踪控制器。 Simulink模型包括:理想状态计算模块、速度跟踪模块、轮毂电机模型、顶层控制器、底层控制器。 Simulink以及CarSim联合仿真进行验证,效果良好。 保证运行成功。
2025-09-11 14:12:32 368KB
1
内容概要:本文探讨了基于管道模型预测控制(TubeMPC)与基于LMI的误差反馈增益,在主动前轮转向(AFS)和稳定性控制(VSC)中的应用。研究通过MATLAB2020b和carsim2020进行仿真,展示了在120km/h车速和0.5附着系数条件下的单移线和双移线实验结果。文中详细介绍了TubeMPC的实现方法、LMI误差反馈增益的作用机制、AFS和VSC的具体应用方式,并提供了完整的仿真流程和结果分析。最终,研究证明了所提出的技术方案能有效提升车辆在高速和复杂路况下的稳定性和轨迹跟踪能力。 适合人群:从事车辆工程、自动控制领域的研究人员和技术人员,尤其是关注车辆稳定性控制和自动驾驶技术的专业人士。 使用场景及目标:适用于希望深入了解车辆稳定性控制技术的研究人员,以及需要评估和改进现有车辆控制系统的工程师。目标是提供一种高效、可靠的车辆控制解决方案,确保车辆在不同驾驶条件下的安全性。 其他说明:本文不仅提供了理论分析,还包括具体的仿真案例和代码实现,便于读者理解和复现研究成果。
2025-09-06 14:45:38 1.1MB
1