Kmeans-python
2022-12-09 09:14:13 85KB Python
1
matlab聚类kmeans代码 作业7 要求 在MapReduce上实现K-Means算法并在小数据集上测试。可以使用附件的数据集,也可以随机生成若干散点的二维数据(x, y)。设置不同的K值和迭代次数,可视化聚类结果。 提交要求同作业5,附上可视化截图。 实现思路 我直接使用了实例代码来运行,用原来的代码创建maven项目KMeansExample。由于原来的代码不是用maven管理的,而且是基于Hadoop1.2编写的程序,所以有一些地方需要进行小小的修改。比如每个java文件前面都要加上对应的包名称,Job对象的创建需要调用getInstance静态方法,而不能直接new Job。 我尝试研读了整个算法的代码,下面简要描述一下示例代码的思路。 主程序:KMeansDriver.main() KMeansDriver.main()方法是整个算法的主程序,它从命令行接收指定的参数k(需要聚成的类数),iterationNum(迭代次数),inputpath,outputpath。依次调用三个主要的过程: generateInitialCluster():随机产生k个cluster
2022-12-07 18:05:50 1.23MB 系统开源
1
official_classification.py : 使用了较多的sklearn中提供的聚类函数 self_classification.py : 使用了较多的手写聚类函数(手写高斯聚类由于计算高维矩阵n次方报错,就没有使用) 两者可以相互比较看手写函数效果如何。 model.py : 其中包含了kmeans,lvq,mixture-of-gaussian聚类函数,以及计算精度和NMI的手写函数,处理标签映射的匈牙利算法。 由于学习向量量化是依据ground truth的得到的一组原型向量,是有监督的学习,因此计算其精度没有意义,在函数里就没有计算精度和NMI,只打印出了原型向量 函数运行时会有warning,不用在意,手写的函数没有优化,速度较慢 代码对三个数据集,分别使用了kmeans,lvq,mixture-of-gaussian三个方法,在得到预测标签后,采用匈牙利算法对标签进行处理,计算其精确度acc和标准互信息nmi 这三种方法聚类的精度只有百分之五十几,在数据集yale中效果较差 运行方法: 安装相应需求的库,直接运行official_classifica
2022-11-30 03:22:26 6.04MB kmeans 支持向量量化 高斯聚类
1
Python实现K-Means聚类后的二维可视化,使用的是生成数据,编译器为jupyter notebook 简单便捷,易于理解 使用库:pandas ,numpy ,sklearn,matplotlib,seaborn
2022-11-23 12:25:32 155KB 可视化 kmeans算法
1
Python实现K-Means聚类后的三维可视化,使用的是生成数据,编译器为jupyter notebook 简单便捷,易于理解 使用库:pandas ,numpy ,sklearn,matplotlib,mpl_toolkits
2022-11-23 12:25:31 185KB 可视化 kmeans算法
1
K-means算法常见示例数据Mall_Customers.csv,可用于计算
2022-11-05 23:23:37 1KB kmeans 算法 机器学习 人工智能
1
实现了kmeans信号分类
2022-11-03 20:28:07 1KB kmeans正确率 Kmeans
1
kmeans和dbscan的聚类算法的matlab实现
2022-11-02 16:22:47 5KB Kmeans DBSCAN matlab 聚类算法
1
Matlab 聚类算法 Kmedoid Kmeans GGclust FuzSam FCMclust
2022-11-01 15:51:39 346KB Kmedoid Kmeans GGclust FuzSam
1
该程序可以实现利用粒子群算法对K-MEANS算法进行优化
2022-10-31 22:23:58 6KB psokmeans pso-kmeans repliedv9a psokmeans
1