内容概要:本文详细介绍了基于ST平台下的STM32F103C8T6单片机的三相电压型SPWM逆变器控制设计及其应用。主要内容涵盖系统研究背景、硬件电路设计、单片机编程、PCB制作、软件系统框架设计、系统测试及仿真验证。通过该设计,实现了对电压和频率的精确调节,提升了电网的供电质量与可靠性。文中提供了完整的原理图工程、源代码工程、仿真工程、详细说明书和PPT等资料。 适合人群:电力电子工程师、嵌入式系统开发者、高校师生及相关领域的研究人员。 使用场景及目标:适用于需要高质量交流电输出的场合,如工业自动化、智能家居等领域。目标是提升电网供电质量,满足现代用电设备的需求。 其他说明:本文不仅提供了理论分析和技术细节,还包括了大量的实操指导,帮助读者全面理解和掌握三相电压型SPWM逆变器的设计与应用。
2025-05-16 11:32:10 3.96MB
1
跨键能量转移(TBET)用于构建高效比率型荧光探针,龚毅君,张翠翠,目前荧光共振能量转移(FRET)已经被广泛应用于设计比率型荧光成像探针。然而,为了提高能量转移效率,FRET体系需要给体的发射光谱�
2025-05-16 02:43:59 1.48MB 首发论文
1
石英晶体的振荡频率会随温度的变化而发生微小的变化,利用这一特性,通过测量石英晶体振荡器的频率,就可司接测得相应的温度值,所以石英晶体谐振器还可用来进行温度的测量。测温石英晶体谐振器就属于这一类产品,它采用玻璃外壳封装软弓线电极,分辨率可达0.01℃-0·0001℃,适合作测温敏感元件。测温石英晶体谐振器的外形如图1所示,其主要特性参数见表1。   图1 BY2型测温石英晶体谐振器外形   表1 BY2型测温石英晶体谐振器主要特性参数    在基础电子学领域中,精确的温度测量一直是技术发展的关键一环。在多种温度测量元件中,BY2型测温石英晶体谐振器以其独特的物理特性及高精度测量能力,逐渐成为精密温度测量的首选设备。这款产品通过利用石英晶体的压电效应和频率-温度特性,将温度变化转换为频率的变化,从而实现对温度的准确测量。 石英晶体之所以能作为温度敏感元件,是因为其结构稳定,对外界温度变化极其敏感。石英晶体的压电效应意味着当晶体受到外力作用时,其内部会产生电荷变化,反之亦然,电场作用下晶体会产生机械变形。这种效应在电子工程中被广泛用于制造传感器和振荡器。在温度测量应用中,石英晶体的振动频率受到温度影响,温度变化会引起晶体内部晶格常数的微妙变化,由此引起振荡频率的变化,进而可以用来推算温度值。 为了确保BY2型测温石英晶体谐振器在不同环境下均能保持稳定的性能,该类型谐振器采用玻璃外壳封装,这种封装形式不仅确保了良好的密封性,还增强了其在恶劣环境下的抗干扰能力。谐振器的软弓线电极设计进一步优化了其电性能,提高了温度响应的灵敏度。 该测温石英晶体谐振器的分辨率可达0.01℃至0.0001℃,这标志着它能够检测到极其微小的温度变化。这种精度对于要求严格的场合至关重要,如医疗设备、实验室精密测量、环境监控以及工业过程控制等领域。高分辨率使BY2型测温石英晶体谐振器成为精密工程和科学研究中的重要工具。 在BY2型测温石英晶体谐振器的技术参数表中,可以找到一系列关键特性,如工作频率范围、工作温度范围、频率温度系数(CTE)、老化率和负载电容等。这些参数共同定义了谐振器的工作特性和适用范围。工作频率范围表明在特定温度区间内,谐振器可以有效工作,而频率温度系数是衡量频率随温度变化速率的参数,这直接影响到温度计算的准确性。老化率指的是随着时间推移,谐振器频率逐渐偏离其标称值的速率,负载电容则描述了谐振器与外部电路结合使用时,系统可承受的电容范围。 在实际应用中,BY2型测温石英晶体谐振器的高精度和高稳定性使其成为众多工程师和技术人员的重要选择。无论是在医疗诊断设备中需要测量人体温度,还是在工业生产过程中监控反应条件,BY2型测温石英晶体谐振器都能提供可靠的数据支持。它优异的性能保证了测量结果的准确性,为技术进步和科学研究提供了有力的工具。 BY2型测温石英晶体谐振器是基础电子学中的一项重要技术突破。其精确、稳定的测量能力,以及玻璃外壳封装带来的高可靠性和耐久性,使得其成为现代电子工程和科研领域不可或缺的精密测量工具。了解并掌握这款产品的特性和应用,对于电子系统设计、精密测量和工业控制等领域的技术发展具有重要意义。
2025-05-15 21:54:35 71KB 基础电子
1
C6140型数控机床纵向进给传动机构装配图 数控机床
2025-05-15 09:46:18 142KB 数控机床 传动机构
1
在IT领域,网络拓扑图是理解计算机网络结构的关键工具,而编程基础则是任何IT专业人员的必备技能。本资源包“网络拓扑图学习,编程基础入门”着重于这两方面的学习,尤其针对金融量化分析的实践应用。下面将详细探讨相关知识点。 我们来看网络拓扑图。网络拓扑图是描绘网络设备、服务器、交换机、路由器等硬件设备之间连接关系的图形表示。它可以帮助我们清晰地了解数据在网络中的传输路径,以及各个设备的角色和功能。网络拓扑图通常有环形、星形、总线型、网状等多种类型,每种都有其特定的优缺点和适用场景。学习网络拓扑图,你需要掌握以下知识点: 1. **基本概念**:了解网络设备、协议、IP地址和MAC地址等基本概念。 2. **拓扑类型**:熟悉不同类型的网络拓扑结构及其特点,如星形拓扑(中心节点管理所有连接)、总线拓扑(所有设备共享一条主干线)和环形拓扑(数据沿环形线路单向传递)。 3. **设计原则**:学习如何根据实际需求选择合适的拓扑结构,考虑因素包括成本、可靠性、扩展性等。 4. **绘制工具**:掌握使用如Visio、 draw.io 或专门的网络拓扑软件来绘制和管理网络图。 编程基础是IT学习的基石,尤其是对于金融量化分析。R语言是数据分析和可视化的重要工具,其标签“R语言 绘图 graphic 开发 关联型分析”表明本资源包涵盖了R语言在绘图、开发和关联型分析上的应用。 1. **R语言基础**:理解R语言的基本语法,如变量赋值、控制结构、函数等。 2. **绘图技术**:“actor_plot2.pdf”可能包含关于如何使用R语言的ggplot2库进行高级数据可视化的内容。ggplot2是一个强大的工具,能够创建美观且专业的图表,如散点图、折线图、箱型图等。 3. **开发技巧**:“完整代码.txt”可能提供了完整的R脚本示例,涵盖了数据处理、模型构建、结果输出等开发过程,帮助初学者了解R语言的项目开发流程。 4. **关联型分析**:在金融量化领域,关联型分析用于识别资产间的相关性,如使用相关系数矩阵或协方差分析。这有助于理解市场动态和构建投资组合。 通过这些学习资源,你可以逐步掌握网络拓扑图的理解和绘制,以及使用R语言进行金融量化分析的基本技能。实践操作是提升技能的关键,结合文档和代码示例进行动手练习,将理论知识转化为实际应用,你的IT技能将得到显著提升。
2025-05-14 10:12:44 775KB R语言 graphic 关联型分析
1
"三电平VSG构网型变流器仿真研究:双闭环控制与SVPWM调制下的电网频率稳定策略",三电平 VSG 构网型变流器仿真 仿真使用双闭环控制,svpwm 调制 [1]包含 LC 滤波器 [2]包含中点电位平衡控制 [3]包含负荷投切与离网切 基本工况: 0—3s 功率指令 170kw 3-6s 功率指令 140kw 电网频率在 1-2s 暂降 0.2hz,vsg 通过 增发有功维持电网频率稳定 3s 时离网,投入本地负荷,从并网运行 转入离网运行 提供参考文献以及 vsg 数学建模文档与计算过程 联系跟我说什么版本,我给转成你需要的版本(默认发2018b)。 ,三电平;VSG;构网型变流器仿真;双闭环控制;svpwm调制;LC滤波器;中点电位平衡控制;负荷投切;离网切换;电网频率暂降;增发有功;vsg数学建模;计算过程。,三电平VSG构网型变流器仿真:双闭环控制与负荷投切离网切换研究
2025-05-12 13:57:01 811KB 数据仓库
1
本研究主要探讨了不同磷效率基因型大豆在不同磷浓度处理下的根系养分吸收特性,进而揭示大豆品种(品系)对磷素吸收及利用效率的差异。研究结果对理解磷素营养对大豆生长发育的影响以及选育磷高效利用的作物品种具有重要意义。 研究中提到的“磷素”指的是植物生长所需的主要营养元素之一——磷,它对于植物的生长发育,尤其是细胞分裂、能量转移以及养分转移等生理过程至关重要。磷在植物体内以有机磷和无机磷的形式存在,参与了DNA和RNA的合成,也与ATP的形成密切相关。 “磷效率基因型大豆”指的是大豆品种在磷营养利用方面的遗传差异,它们在低磷土壤条件下的生长表现和磷吸收利用能力各不相同。根据它们对磷的利用效率,可以将大豆分为磷高效品种和磷低效品种。磷高效品种能在磷营养受限的条件下维持较好的生长发育,吸收更多的磷素以满足自身的生长需求。 研究指出,在低磷处理下,磷高效品种的大豆在鼓粒期和始熟期根系氮的百分含量显著高于磷低效品种。氮素是植物生长必需的大量元素之一,参与了植物体内氨基酸、蛋白质、叶绿素等重要化合物的合成。磷高效品种在磷胁迫条件下,通过提高氮素的吸收与转化效率来支持其生长,这是其适应低磷环境的一种策略。 除了氮素,磷高效品种在不同生育期的磷(P%)和钾(K%)的含量也均高于磷低效品种。钾是植物体内重要的渗透调节物质,对植物的光合作用、酶活性调控和物质运输等均有重要作用。磷高效品种较高的磷和钾含量反映了其根系吸收养分的高效性。同时,磷高效品种的磷和钾的积累量也高于磷低效品种,其平均高出71.7%,说明磷高效品种在吸收和积累磷、钾方面的优势。 高磷处理下,磷高效品种的氮和磷积累量在不同生育期均高于磷低效品种的,且在开花期、鼓粒期到始熟期磷高效品种根的钾积累量显著高于磷低效品种,平均高出150.2%。高磷条件下,磷高效品种的养分积累优势更为明显,这表明其在磷营养丰富环境下的吸收利用能力依然保持高效。 研究中还发现,与低磷相比,中磷和高磷处理能显著增加磷低效品种的根系氮、磷和钾的积累量。但磷高效品种在不同磷水平下的相对变化较小,说明其即使在较低的磷浓度下,根系也能有效地吸收较多的氮、磷和钾。这表明磷高效品种对于磷营养水平的适应性更广,可以在磷素资源较为有限的环境中保持相对稳定的生长状态。 关键词“大豆”,指的是本研究的对象植物,它是重要的油料作物和植物蛋白资源,对全球农业生产和食品供应有着重要的影响。“磷高效”是描述植物对磷营养吸收和利用能力的一种特性,与植物的遗传背景、根系形态和生理生化特征紧密相关。“根系”是植物吸收水分和营养物质的主要器官,根系的发育状况和功能直接影响植物对养分的吸收效率。“养分”则涉及植物生长发育所需的全部营养元素,包括氮、磷、钾等大量元素和微量元素。 这项研究通过比较两种不同类型的大豆品种在不同磷处理条件下的养分吸收特性,揭示了磷高效基因型大豆根系的养分吸收和积累优势,为今后大豆品种的选育和磷肥的科学管理提供了重要的理论依据和实践指导。
2025-05-11 15:31:03 269KB 首发论文
1
内容概要:本文详细介绍了如何利用MATLAB/Simulink进行电力电子仿真的具体方法和技术细节。首先讲解了单相和三相全桥整流电路的构建,强调了触发脉冲相位控制、滤波器选择以及参数调整的重要性。接着探讨了电压型逆变电路的设计,着重于PWM生成策略、死区时间和滤波器的应用。随后讨论了斩波电路(尤其是Buck和Boost电路),涉及占空比调节、PID控制器应用及其稳定性优化。最后介绍了交流调压电路的两种方式——相控式和斩控式的实现方法,并提供了仿真优化技巧,如采用理想开关模型、调整求解器等。 适合人群:具有一定电力电子基础知识和MATLAB/Simulink使用经验的研发人员、学生或工程师。 使用场景及目标:适用于希望深入理解电力电子设备工作原理并通过仿真手段验证设计方案的研究者;旨在帮助使用者掌握从模型建立到参数调优的完整流程,提高仿真的准确性和效率。 其他说明:文中不仅提供了详细的步骤指导,还包括了许多实用的小贴士和注意事项,有助于解决常见的仿真难题。同时,附带了一些具体的代码片段供参考,便于快速上手实践。
2025-05-10 15:26:01 883KB 电力电子 斩波电路
1
空时格型编码技术是无线通信中一种重要的智能天线技术组成部分,它结合了信道编码技术和阵列处理技术,能够有效提高无线通信系统的性能。空时编码技术主要分为两大类:一类是在解码时需要知道信道状态信息(CSI),另一类则不需要。空时格型编码(Space-Time Trellis Coding, STTC)是一种传输分集技术的改进形式,它将编码和调制结合在一起,以实现编码增益和分集增益的平衡。 STTC的基本结构类似于有限状态的状态转移器,通过最新的信息源比特流来确定编码器的状态转移,从而发射一个空时矢量符号(Space-Time Signal, STS)。STS的符号可以从各种星座图中选择,例如QPSK、8PSK、16QAM等,以适应不同的传输需求。空时格型编码的系统结构可以用图示来表示,其模型通常包含多个发送天线和多个接收天线,信道由多个独立的慢变化瑞利衰落子信道构成。 在设计STTC时,系统通常假设有M个发射天线和N个接收天线,信号经过信道编码后,通过串/并变换器被分成M个数据流,各自对应一个发射天线。每个发送天线在特定时刻t所发射的数据与接收信号向量之间的关系可以通过信道矩阵来表达,该矩阵描述了信号在传输过程中的衰落情况以及接收端天线对信号的接收情况。 STTC译码通常采用最大似然译码方法,但此方法复杂度较高,因此实际应用中会采用如维特比(Viterbi)译码这样的次优解码方法来降低计算复杂度。维特比译码是一种动态规划算法,它能够在给定的有限状态转移器模型下,找到最有可能的状态序列。 STTC的设计原则是实现编译码复杂度、性能和频带利用率之间的最佳折衷。为达到此目的,编码器的状态转移逻辑设计至关重要,需要根据信道环境、调制方式等因素综合考量。此外,STTC还能够有效抑制噪声和干扰,提高无线通信系统的整体性能,尤其是面对带宽限制、传播衰减、信道时变特性、噪声、干扰以及多路径效应等常见问题时。 由于无线信道的时变特性和衰落特性,空时格型编码技术可以采用空间和时间上的分集技术来提高系统性能。空间分集通过多个天线发送相同或不同的信号来增加冗余度,而时间分集则通过在时间上发送信号的多个版本来达到同样的目的。这两种分集技术结合使用可以极大地提高通信系统的可靠性。 STTC在具体应用时,需要对系统进行细致的性能评估。影响编码性能的因素有很多,包括但不限于信号调制方式、编码深度、编码速率、衰落信道模型、天线配置等。在设计时,需要平衡这些因素以达到最佳的性能表现,同时也需要考虑实际应用中的复杂性和成本问题。 智能天线技术通过空时编码技术的应用,实现了信道容量的提升,这对于满足人们对无线通信高质量和高容量的需求具有重要的现实意义。随着无线通信技术的进一步发展,空时格型编码技术及其译码方法将面临更多新的挑战和机遇,推动通信系统向着更高效率、更低功耗、更强鲁棒性的方向发展。
2025-05-09 12:42:40 491KB 空时编码技术
1
该程序构造给定基矩阵和子矩阵大小的 girth-6 类型 III qc-ldpc 代码。 子矩阵的大小是可变的。 该程序使用搜索算法。 给定一些参数,它可能无法构建代码。 在这种情况下,用户可以尝试多次,或者可以简单地增加代码的大小以提高找到代码的机会。 构建的代码存储在 H.
2025-05-06 11:14:19 3KB matlab
1