基于FPGA的FOC电流实现:Verilog编写的电流PI控制器与SVPWM算法,清晰代码结构,适用于BDLC和PMSM,含Simulink模型,基于FPGA的FOC电流实现 1.仅包含基本的电流 2.采用verilog语言编写 3.电流PI控制器 4.采用SVPWM算法 5.均通过处理转为整数运算 6.采用ADC采样,型号为AD7928,反馈为AS5600 7.采用串口通信 8.代码层次结构清晰,可读性强 9.代码与实际硬件相结合,便于理解 10.包含对应的simulink模型(结合模型,和rtl图,更容易理解代码) 11.代码可以运行 12.适用于采用foc控制的bldc和pmsm 13.此为源码和simulink模型的价,不包含硬件的图纸 A1 不是用Matlab等工具自动生成的代码,而是基于verilog,手动编写的 A2 二电平的Svpwm算法 A3 仅包含电流闭 A4 单采样单更新,中断频率 计算频率,可以基于自己所移植的硬件,重新设置 ,基于FPGA的FOC电流实现; Verilog语言编写; 电流PI控制器; SVPWM算法; 整数运算; ADC采样(A
2025-07-14 11:35:09 78KB kind
1
Comsol微谐振腔的形波导耦合技术与波束包络及波动光学模块的对比研究,探索Comsol微谐振腔与形波导耦合技术:波束包络与波动光学模块的对比研究,Comsol微谐振腔,形波导耦和。 对比波束包络和波动光学两个不同模块。 ,Comsol微谐振腔; 形波导耦合; 波束包络; 波动光学; 对比分析。,Comsol微谐振腔对比波束包络与波动光学模块 在光学与微电子领域,微谐振腔和形波导耦合技术是实现高效光学通信与信息处理的关键技术之一。微谐振腔因其尺寸微小、品质因数高以及易于集成等优点,在光子集成电路中具有广泛的应用前景。形波导作为一种有效的波导结构,能够有效地引导和控制光波在微小空间中的传播,其与微谐振腔的耦合技术成为了研究的热点。 波束包络方法是一种近似的数学模型,它通过模拟波束的传播行为来预测光波在波导中的传播特性。与传统的波动光学方法相比,波束包络方法通常具有计算复杂度低、分析速度快等优势,适用于初步设计与快速分析。波动光学方法则更加精细,它基于麦克斯韦方程组对电磁波的传播进行完整的描述,因此能够提供更为准确和详尽的波导特性,但计算成本相对较高。 本研究的目的是对比分析COMSOL Multiphysics仿真软件中两种不同模块——波束包络和波动光学模块在模拟微谐振腔与形波导耦合时的准确性与效率。通过对比,研究者能够更好地了解不同模块在处理类似问题时的优缺点,从而为实际工程应用提供理论依据和技术指导。例如,在进行初步设计时,波束包络方法可能是一个更高效的选择,而在对设计结果进行精确验证时,则可能需要应用波动光学方法。 COMSOL Multiphysics是一款多物理场耦合仿真软件,它允许用户对光学、电磁学、流体力学等多个物理场进行模拟分析。在微谐振腔与形波导耦合的仿真研究中,利用该软件可以模拟光波在微谐振腔与形波导之间的耦合过程,以及在此过程中产生的诸如谐振频率、Q因子、场分布等重要参数。 本研究的深入探讨,不仅有助于推动微谐振腔和形波导耦合技术的发展,还能够促进光子集成电路领域相关技术的革新与进步。通过对微谐振腔与形波导耦合技术的深入解析,以及波束包络与波动光学模块的对比分析,可以为研究人员和工程师提供一个更加全面、精确的设计和分析工具,从而加速新型光学器件的开发和优化。 此外,随着集成光学技术的快速发展,微谐振腔与形波导耦合的研究不仅限于基础理论探索,还包括其在实际应用中的表现。诸如在光通信、光学传感、光学信号处理等领域的应用,都对微谐振腔的设计提出了新的挑战和要求。因此,本研究不仅具有重要的理论价值,同时也具有显著的实际应用意义。 本研究将通过对COMSOL Multiphysics软件中波束包络和波动光学模块的对比分析,深入探索微谐振腔与形波导耦合技术,为相关领域提供更加精确的设计方案和技术支持。通过这项研究,可以加深我们对微谐振腔和形波导耦合技术的理解,推动光学和微电子技术的发展。
2025-07-14 10:23:03 184KB sass
1
内容概要:本文详细探讨了在Comsol软件中,利用波束包络模块和波动光学模块对微谐振腔与形波导耦合进行仿真的优劣比较。波束包络模块适用于长距离传播且光束宽度远大于波长的情况,计算效率高,但精度有限;波动光学模块基于麦克斯韦方程组,能精确描述光的行为,但计算量大。文中通过具体代码示例展示了两个模块的设置方法,并讨论了它们在不同场景下的适用性和性能表现。 适合人群:从事光学仿真、微谐振腔研究及相关领域的科研人员和技术开发者。 使用场景及目标:① 对于初步探索或对计算效率要求较高的场合,推荐使用波束包络模块;② 需要高精度仿真,尤其是涉及细微光学现象的研究,则更适合使用波动光学模块。 其他说明:文章还提到了网格划分、边界条件设置等方面的注意事项,并给出了混合使用两种模块的实际案例,帮助用户更好地理解和选择合适的方法。
2025-07-14 09:56:46 216KB
1
开关电源的输出电压Vo是由一个控制电压Vc来控制的,即由Vc与锯齿波信号比较,产生PWM波形。根据锯齿波产生的方式不同,开关电源的控制方式可分为电压型控制和电流型控制。电压型的锯齿波是由芯片内部产生的,如LM5025,电流型的锯齿波是输出电感的电流转化成电压波形得到的,如UC3843。对于反激电路,变压器原边绕组的电流就是产生锯齿波的依据。 开关电源的路设计与仿真是一项关键的技术节,它直接影响着电源系统的稳定性和效率。开关电源的核心在于通过控制电压Vc来调整输出电压Vo,这一过程通常涉及到比较Vc与锯齿波信号,生成脉宽调制(PWM)波形。根据锯齿波的生成方式,开关电源分为电压型控制和电流型控制。 电压型控制的开关电源,如使用LM5025芯片,其锯齿波由内部产生。而电流型控制,如UC3843,锯齿波来源于输出电感电流转换的电压。对于反激电路,变压器原边绕组的电流被用来产生这个锯齿波。输出电压Vo与控制电压Vc的比值定义为未补偿的开传递函数Tu,它在频率响应分析中以Bode图的形式展现。 电压型控制的电源,如非隔离的BUCK电路,其Tu具有双极点特性;而电流型控制的电源,如同样是非隔离的BUCK电路,Tu则表现为单极点。不同电路的Tu可以通过参考相关资料获取。 在计算机仿真节,开关电源的建模和分析基于开关平均模型,该模型忽略了高频开关分量,仅保留低频分量。例如,CCM(连续导电模式)BUCK电路中,通过直流扫描确定静态工作点,交流扫描则得到Tu的Bode图。在DCM(断续导电模式)BUCK中,Tu变为单极点函数。类似地,CCM BOOST电路和带变压器隔离的电流型电路,如BUCK电路,也需要采用相应的模型进行仿真,以确保计算的准确性。 在实际电路中,控制占空比d的方法有电压控制和电流控制。电压控制通过GAIN放大器,其放大倍数等于锯齿波幅值的倒数。电流控制则是利用电流互感器将输出电感电流转换为电压信号,然后通过比较产生PWM波形。 举例来说,电压型控制的CCM BUCK和电流型控制的CCM BUCK,它们的仿真电路分别加入了GAIN和电流互感器,以实现对Vc到Vo的传递函数Tu的仿真。带变压器隔离的电流型电路,如使用UC3843,其内部运放和反馈回路共同作用产生控制电压Vc,且需要考虑变压器变比和斜坡补偿。 开关电源的路设计和仿真是一门深奥的学问,涉及到电路原理、控制策略和信号处理等多个方面。通过精确的建模和仿真,设计者能够优化电源性能,确保系统在各种工况下的稳定运行。
2025-07-10 14:57:47 468KB 开关电源 环路设计
1
基于FPGA的以太网TCP数据回设计:Vivado工程下的网络数据包传输与路控制实现,基于FPGA的以太网TCP数据回设计与Vivado工程实践,基于FPGA的以太网TCP数据回设计 vivado工程 ,基于FPGA; 以太网TCP; 数据回设计; Vivado工程,基于FPGA的Vivado工程:TCP数据回设计的实现与优化 随着信息技术的飞速发展,网络数据传输已成为日常通信不可或缺的一部分。以太网作为其中最常见的网络技术之一,在数据传输的稳定性和高效性上扮演着关键角色。FPGA(现场可编程门阵列)作为一种可编程逻辑设备,因其高速处理能力和灵活的设计优势,在网络通信领域得到了广泛应用。 本设计的主题是基于FPGA的以太网TCP数据回设计,其核心目标是实现网络数据包的传输与路控制。回,也就是回测试,是网络设备测试中的一种技术,它可以模拟远端的网络设备响应,用于检查本地设备的功能性。TCP(传输控制协议)作为传输层的重要协议,保证了数据包在互联网上的可靠传输。Vivado是Xilinx公司推出的一套集成设计境,它为基于FPGA的系统提供了从设计到实现的完整流程。 为了达成基于FPGA的以太网TCP数据回设计,需要进行一系列工程实践,这些实践包括硬件选择、电路设计、逻辑编程以及系统调试等步骤。在硬件层面,需要选择合适的FPGA芯片,根据数据回设计的性能要求配置相应的引脚和外设。电路设计则涉及绘制电路图和布局,确保电路的稳定性和效率。逻辑编程是利用硬件描述语言(HDL),如VHDL或Verilog,在FPGA上实现TCP数据处理逻辑。系统调试则通过仿真和实际测试来验证回设计的正确性和性能指标。 在整个工程实践过程中,文档的编写同样重要。设计文档应详尽描述工程的设计理念、实现方法、测试结果和遇到的问题及解决方案,为工程的维护和升级提供参考。在现代通信领域,这种基于FPGA的以太网TCP数据回设计具有广泛的应用前景,它可以用于网络测试设备、网络性能分析仪以及各种需要高速数据处理的网络设备中。 本设计不仅具有理论研究价值,还具有实际应用价值。在Vivado境下进行FPGA的设计,可以大大缩短开发周期,提高设计的可靠性。通过深入探索以太网TCP数据回设计的深度问题,可以为未来网络技术的发展提供新的思路和解决方案,推动网络通信技术向更高的性能和更智能的管理方向发展。
2025-07-10 10:12:49 2.04MB 开发语言
1
内容概要:本文详细介绍了基于Gardner的QPSK调制定时同步的Matlab仿真过程。首先,生成随机QPSK信号并进行四倍采样,接着通过Gardner调整采样点的位置,使其落在符号的最佳位置。文中展示了具体的Matlab代码实现步骤,包括信号生成、四倍采样、Gardner误差检测与调整、星座图绘制以及误码率计算。最终结果显示,Gardner有效提高了符号的采样精度,使星座图更加集中,误码率显著降低。 适合人群:具有一定Matlab编程基础和技术背景的通信工程技术人员、研究人员及学生。 使用场景及目标:适用于数字通信领域的定时同步研究和教学,帮助理解和掌握Gardner的工作原理及其在QPSK调制中的应用。目标是通过具体实例演示,加深对定时同步机制的理解,并提供可复现的实验平台。 其他说明:文中还讨论了一些实际调试中的注意事项,如成型滤波器的群延迟补偿、初始采样相位差的影响、路滤波器系数的选择等。此外,提供了关于不同插值算法性能的比较,强调了Gardner在突发通信场景中的优势。
2025-07-07 15:59:20 552KB
1
使用交替扫描方式,以微控制器ATMEGA64为核心控制电子脚感应踏板接收电路,实现了6格感应踏板错时接收电子脚信息的设计方案。系统采用6片专用集成电路芯片HTRC110驱动天线线圈产生磁场,利用HTRC110的接收通道接收电子脚发射的编码信号。该编码信号经ATMEGA64解码后得到电子脚识别信息,识别信息最后通过串口输出到鸽钟。 赛鸽电子脚感应踏板设计是基于RFID(Radio Frequency Identification)技术的一种高效解决方案,专为信鸽竞翔归巢时的身份识别而设计。该系统利用125 kHz的频率,通过微控制器ATMEGA64为核心,实现了对6个感应踏板的交替扫描,确保每个踏板能独立接收到电子脚的信息。 ATMEGA64是美国ATMEL公司生产的高性能、低功耗AVR 8位微处理器,具备高速处理能力(16 MIPS),拥有丰富的I/O端口、串口和计数器,适用于这种需要快速响应和多通道同步操作的场合。在系统中,它接收由6片HTRC110集成电路驱动的天线线圈产生的磁场中的编码信号,这些信号由赛鸽佩戴的电子脚发出。 HTRC110芯片是一种专门用于RFID系统的接收模块,它可以产生125 kHz的感应磁场,供电子脚工作并接收其编码信号。HTRC110采用曼彻斯特编码,这是一种自同步数据传输方式,数据传输速率为2 kHz。通过3线通信接口(SCLK、DOUT、DIN)与微处理器连接,接收通道轮流交替工作,避免了相邻线圈间的干扰。 通信电路设计中,使用了MAX232芯片来完成TTL电平与RS232电平的转换,以便通过串口实现多级踏板之间的数据交换和控制信号传输。串口0和1分别负责上下级踏板之间的通信,确保信息的准确传递。 软件设计方面,电子脚感应踏板的软件主要包括扫描接收程序、通信程序和时钟节拍服务程序。扫描接收程序对6个接收通道进行交替循扫描,解码来自电子脚的曼彻斯特编码信号。通信程序则按照特定协议处理数据传输,确保信息在各级踏板之间的有效流动。时钟节拍服务程序则负责系统的定时管理和多级踏板的同步协调。 125 kHz赛鸽电子脚感应踏板设计是一种集成硬件和软件的复杂系统,利用RFID技术实现了对赛鸽身份的快速、准确识别,大大提高了信鸽比赛的效率和准确性。该设计体现了微控制器在物联网应用中的重要作用,以及在无线通信和信号处理方面的先进理念。
2025-07-06 23:04:44 219KB ATmega64
1
双向LLC-CLLLC谐振变换器仿真模型研究:开与电压闭均变频控制的DCDC隔离型变换器,双向LLC与DCDC隔离型变换器:开与电压闭仿真模型及变频控制研究,双向LLC(CLLLC)谐振变器仿真模型,双向DCDC隔离型变器。 开仿真和电压闭仿真都有,均变频控制。 ,核心关键词:双向LLC谐振变换器;仿真模型;双向DCDC隔离型变换器;开仿真;电压闭仿真;均变频控制,双向CLLLC谐振变换器仿真模型:开与电压闭变频控制研究 在现代电力电子系统中,双向LLC-CLLLC谐振变换器作为一种隔离型直流-直流(DCDC)变换器,扮演着至关重要的角色。这种变换器能够在能量传输时保持较高的效率和功率密度,并且其设计具备良好的双向电能流动能力。为了深入理解这一变换器的工作原理和性能表现,研究者们建立了一系列仿真模型,并对这些模型进行了开和电压闭的均变频控制仿真研究。 开仿真模型是基于理想状态下的变换器工作状态构建的,它不考虑系统中的反馈控制节,主要用于初步评估变换器在不同工作条件下的基本性能。而电压闭仿真模型则包括了反馈控制节,使得变换器能够根据输出电压的实际情况进行调节,以达到稳定输出电压的目的。均变频控制技术是通过改变变换器的工作频率来调整其输出电压和功率,这种控制方法可以灵活应对不同的负载条件,保持变换器运行在最优效率区间。 在进行仿真模型分析时,研究者们利用现代电子仿真软件来模拟变换器的实际工作过程,从而获得包括电流、电压、功率等关键参数的动态变化数据。这些数据对于评估变换器性能、优化电路设计以及验证控制策略具有重要的指导意义。特别是在双向DCDC隔离型变换器的应用中,这种仿真研究尤为重要,因为它们通常用于需要高可靠性和高效率的场合,如电动汽车充电系统、可再生能源发电系统以及能量存储系统等。 通过对双向谐振变换器的仿真研究,可以揭示其在不同负载条件下的工作效率、动态响应特性以及热性能等关键性能指标。这为工程师提供了一个有力的工具,以预测和解决实际应用中可能出现的问题。同时,对双向谐振变换器的研究不仅仅局限于其基本功能,还包括对其结构设计的优化、控制策略的改进以及新应用场景的探索。 例如,在“技术之域动态变化中的双向隔离型变换器探索在电力”文档中,研究者探讨了变换器在电力系统中的应用和动态变化特性。而在“双向谐振变换器和双向隔离型变换器是现代电力系统中”文档中,则着重分析了变换器在现代电力系统中的重要性和作用。 双向LLC-CLLLC谐振变换器的仿真模型研究,无论是在开还是电压闭的均变频控制方面,都是为了更深入地了解变换器的内部工作原理和性能表现,以及如何更好地将其应用于实际电力电子系统中,提高系统效率和可靠性。这项研究具有重大的实际应用价值,对于推动电力电子技术的发展与创新具有积极的推动作用。
2025-07-03 18:19:29 1.45MB
1
双向LLC-CLLLC谐振变换器及其开与电压闭仿真的均变频控制研究,双向LLC-CLLLC谐振变换器与双向DCDC隔离型变换器的开与电压闭仿真研究,双向LLC(CLLLC)谐振变器仿真模型,双向DCDC隔离型变器。 开仿真和电压闭仿真都有,均变频控制。 ,核心关键词:双向LLC谐振变换器;仿真模型;双向DCDC隔离型变换器;开仿真;电压闭仿真;均变频控制。,双向LLC-CLLLC谐振变换器与DCDC隔离型变换器仿真研究 在电力电子领域中,变换器是一种用于转换电能形式的设备,它能够将电能从一种电压等级或电流形式转换为另一种电压等级或电流形式,以适应不同的电气设备使用要求。双向LLC-CLLLC谐振变换器作为一种新型的变换器结构,具有高效率、高功率密度以及宽范围的电压调节能力等特点。这种变换器尤其适用于需要频繁能量交换的应用场景,比如电动汽车的电池管理系统和可再生能源的功率调节系统。 在双向LLC-CLLLC谐振变换器的设计和应用过程中,仿真是一个非常重要的节。通过仿真模型的建立,研究人员可以在不需要实际搭建物理电路的情况下,对变换器的性能进行评估和优化。开仿真通常指的是在不考虑反馈控制的条件下,模拟变换器的工作状态,这种方式有助于初步理解变换器的基本工作特性。而电压闭仿真则是在开仿真基础上加入了电压反馈控制,通过控制算法来维持输出电压的稳定性,这种方式更贴近实际应用中变换器的工作境。 均变频控制是变换器中的一种控制策略,它通过调节变换器工作频率来实现对输出电压或电流的精确控制。在双向LLC-CLLLC谐振变换器的仿真研究中,均变频控制可以用于评估变换器在不同工作频率下的性能表现,并优化控制参数以满足特定的应用需求。 此外,双向DCDC隔离型变换器是一种隔离式的双向直流电压转换器,它能够实现电气隔离的同时完成电压的升降,具有安全性和灵活性等优点。在仿真研究中,将双向LLC-CLLLC谐振变换器与双向DCDC隔离型变换器进行比较和结合使用,可以探索出更高效、更可靠的能量转换解决方案。 本研究的关键词包括:双向LLC谐振变换器、仿真模型、双向DCDC隔离型变换器、开仿真、电压闭仿真和均变频控制。这些关键词共同构成了本研究的核心内容,涵盖了变换器设计、性能分析、控制策略以及仿真技术等各个方面。 通过上述的仿真研究,可以在变换器的设计和优化过程中,提前发现潜在的问题,减少实际电路搭建的成本和风险,并且有助于提出新的设计改进方法和控制策略。仿真研究的重要性在于其能够为电力电子工程师提供一个相对安全的境来进行实验和测试,这对于推动电力电子技术的发展具有重要的意义。
2025-07-03 18:15:33 1.35MB css3
1
低压无感BLDC方波控制源码集:通用性高,高效调速,多控制,参数宏定义方便调试,低压无感BLDC方波控制全源码解析:高通用性,参数化启动,多控制及宏定义调试,最高电转速达12w,低压无感BLDC方波控制,全部源码,方便调试移植 1.通用性极高,图片中的电机,一套参数即可启动。 2. ADC方案 3.电转速最高12w 4.电感法和普通三段式 5.按键启动和调速 6.开,速度,限流 7.参数调整全部宏定义,方便调试 代码全部源码 ,关键词: 低压无感BLDC方波控制; 全部源码; 通用性极高; ADC方案; 最高12w电转速; 电感法; 普通三段式; 按键启动调速; 开/速度/限流; 参数宏定义方便调试 结果为:低压无感BLDC方波控制;全部源码;通用性;ADC方案;最高电转速;电感法;普通三段式;按键启动调速;开、限流控制;参数宏定义。 (注意:以上关键词用分号分隔为:低压无感BLDC方波控制;全部源码;通用性极高;ADC方案;12w电转速;电感法与普通三段式;按键启动调速;开、速度、限流控制;参数调整宏定义),通用性极强BLDC电机方波控制源码:
2025-07-03 11:23:38 19.37MB
1