想用深度学习的方法做一个轨道表面缺陷检测的项目,无奈找不到数据集,各大铁路轻轨运行的公司也不对外开放轨道缺陷图像,网上的数据集要不是那种损坏特别严重的图像(严重到根本无法在使用的),要不都是根据几十张图像进行数据增强凑数的,训练效果也不太好。我一气之下花了几个月的时间在各大开放数据集中找了600张高清的轨道表面缺陷图像,都是高质量的原图,但没有打标签,需要各位重新标注。由于600张一起上传太大,现在分为3批上传,每批200张,给大家开源,共同学习。数据收集不易,对大家有帮助的,请帮忙点个赞,打赏一下。谢谢。
2025-08-15 11:24:54 329.73MB
1
想用深度学习的方法做一个轨道表面缺陷检测的项目,无奈找不到数据集,各大铁路轻轨运行的公司也不对外开放轨道缺陷图像,网上的数据集要不是那种损坏特别严重的图像(严重到根本无法在使用的),要不都是根据几十张图像进行数据增强凑数的,训练效果也不太好。我一气之下花了几个月的时间在各大开放数据集中找了600张高清的轨道表面缺陷图像,都是高质量的原图,但没有打标签,需要各位重新标注。由于600张一起上传太大,现在分为3批上传,每批200张,给大家开源,共同学习。数据收集不易,对大家有帮助的,请帮忙点个赞,打赏一下。谢谢。
2025-08-15 11:24:27 234.44MB
1
想用深度学习的方法做一个轨道表面缺陷检测的项目,无奈找不到数据集,各大铁路轻轨运行的公司也不对外开放轨道缺陷图像,网上的数据集要不是那种损坏特别严重的图像(严重到根本无法在使用的),要不都是根据几十张图像进行数据增强凑数的,训练效果也不太好。我一气之下花了几个月的时间在各大开放数据集中找了600张高清的轨道表面缺陷图像,都是高质量的原图,但没有打标签,需要各位重新标注。由于600张一起上传太大,现在分为3批上传,每批200张,给大家开源,共同学习。数据收集不易,对大家有帮助的,请帮忙点个赞,打赏一下。谢谢。
2025-08-15 11:23:46 318.14MB
1
道路缺陷数据集是针对目标检测领域,特别是道路缺陷识别任务而设计的一组训练和测试数据。这些数据集以VOC格式和YOLO格式提供,每种格式都包含有图片和对应的标注文件,共计5000张jpg格式的图片及其标注。VOC格式的标注包含XML文件,YOLO格式则包含TXT文件。数据集涵盖了八种道路缺陷类别,分别是井盖、修补网、修补裂缝、坑洼、裂缝、修补坑洼、网状结构及其他。这些类别对应于道路养护和维护工作中的常见问题。每种类别都有相应的矩形框标注,用以指定图像中缺陷的具体位置。例如,裂缝类别中,共有1656个矩形框标注,而井盖类别中则有4164个标注,每张图片可能包含多个缺陷类别,因此总框数为10776。 该数据集使用了labelImg这一常用的图像标注工具来完成所有图片的标注工作,标注工具的选择保证了标注的准确性和一致性。标注规则规定,对于每一种缺陷类别,都应画出矩形框来明确缺陷的位置。整个数据集的标注工作严格按照这个规则来执行,确保了数据的质量和可用性。 数据集的具体结构包括5000个jpg格式的图片,5000个VOC格式的XML标注文件和5000个YOLO格式的TXT标注文件。每张图片都有一对对应的XML和TXT标注文件,其中XML文件详细描述了图片中每个缺陷的位置和类别信息,而TXT文件则提供了相同信息,但格式适用于YOLO系列的目标检测模型。这种格式的兼容性使得数据集可以广泛应用于深度学习和计算机视觉的实验研究。 需要注意的是,尽管该数据集提供了大量的标注数据,但制作者明确指出不对由该数据集训练得到的模型或权重文件的精度作任何保证。这样的声明提醒使用者,虽然数据集提供了准确且合理的标注,但模型训练和验证结果还受到多种因素的影响,包括模型的选择、训练策略、数据增强技术等。 这个道路缺陷数据集为研究人员和工程师提供了一个宝贵的资源,用于研究和开发能够自动识别和分类道路缺陷的算法。这样的技术对于实现道路智能巡检、自动化维护规划等领域具有重要意义,有助于提高道路维护工作的效率和质量。
2025-07-31 17:15:13 732KB 数据集
1
道路缺陷检测数据集是专门为道路缺陷识别和分析开发的,其核心作用在于通过机器学习、计算机视觉等技术手段提升道路维护效率,减少交通事故,保障公共安全。这类数据集通常包含大量标注过的道路缺陷图片,以及与之对应的.json格式的标注文件。这些标注文件记录了图像中的缺陷位置、类型等关键信息,为研究者和开发者提供了进行模型训练和评估的第一手资料。 在该数据集中,每一对道路缺陷检测数据包括一张.jpg格式的高清晰度道路图片和一个相应的.json标注文件。这些数据共同组成了一个包含500对样本的集锦,为道路缺陷检测算法提供了充足的学习和验证材料。通过使用这个数据集,研究人员可以训练和测试各种图像处理算法,例如边缘检测、图像分割和缺陷分类等。 该数据集对于智慧城市基础设施的维护具有重要的现实意义。利用这些数据,可以开发出能够自动识别和报告道路缺陷的智能系统,从而提高道路养护的效率和响应速度。这些系统可以在减少人工检查成本的同时,确保道路的安全性,延长道路的使用寿命。 此外,这个数据集不仅限于道路检测的应用,还可以扩展到其他类似的视觉检测任务中。例如,它可以用于铁路、机场跑道等其他基础设施的缺陷检测。这表明道路缺陷检测数据集具有较高的通用性和适用性,有望在更广泛的领域内发挥作用。 数据集的精确和多样性是其重要的品质指标。为此,数据集中包含的道路缺陷类型应覆盖裂缝、坑洼、隆起、油污、异物等多种常见问题。通过多样化的缺陷类型,数据集能够提供丰富的信息,帮助算法学习如何识别和分类不同类型的缺陷。同时,数据集的创建者需要确保所选取的道路图片具有足够的代表性,以便算法能够适应各种光照条件、天气状况和道路材质。 在实际应用中,数据集的使用需要一定的技术背景知识。使用者需要具备图像处理和机器学习的基本理论知识,以及至少一种相关编程语言的编程技能,如Python。此外,了解如何使用深度学习框架如TensorFlow或PyTorch,对于利用这些数据进行算法开发至关重要。 对于希望改善或开发新型道路缺陷检测系统的研究人员、工程师和开发人员来说,道路缺陷检测数据集是宝贵的学习和研究资源。通过这个数据集的实践,他们不仅可以提升现有检测技术的准确性,还能探索新的检测方法,进而为道路安全和智能交通系统的建设作出贡献。
2025-07-23 22:17:06 31.45MB 数据集
1
智慧工厂中的机械铸件缺陷检测是智能制造领域的重要环节,它通过机器视觉和图像处理技术来识别铸件生产过程中可能出现的各种缺陷。其中,数据集作为机器学习和计算机视觉算法训练的基础,对于提高检测准确性至关重要。本文详细介绍了智慧工厂机械铸件缺陷检测数据集的格式、组成、类别标注数量等关键信息,为相关领域的研究者和工程师提供了宝贵的数据支持。 数据集使用Pascal VOC格式和YOLO格式,提供了4270张jpg格式的图片及其对应的标注文件。Pascal VOC格式是计算机视觉领域广泛使用的标注格式之一,它通过xml文件来记录图片中每个目标物体的类别和位置信息,使用矩形框标记物体边界。YOLO格式则是另一种在实时目标检测领域应用广泛的标注方式,通过txt文件来记录目标的类别和相对位置信息,相对于Pascal VOC格式而言,YOLO格式的数据处理速度更快。 数据集中标注了8个不同的类别,这8个类别分别是“Casting_burr”(铸造飞边)、“Polished_casting”(抛光铸件)、“burr”(飞边)、“crack”(裂纹)、“pit”(坑洞)、“scratch”(划痕)、“strain”(应力痕迹)和“unpolished_casting”(未抛光铸件)。每种类别都标注有相应的矩形框,其中“Polished_casting”类别的标注数量最多,为2529个,而“burr”类别的数量最少,仅有3个。 数据集的总框数为10204,这些标注框覆盖了图片中所有被识别出的缺陷,提供了丰富的信息用于训练和验证机器学习模型。在进行缺陷检测时,对不同类别的缺陷进行精确标注是至关重要的,因为模型的性能很大程度上依赖于标注数据的质量和多样性。 数据集的标注工作是通过专门的标注工具完成的,在本案例中,使用的是labelImg工具。这种工具允许标注者在图片上绘制矩形框,并为每个框指定所属类别,是提高数据集标注效率的有效方式。标注规则的制定,同样对提高标注效率和准确性起到了重要作用。 标注例子的提供使得研究者和工程师能够直观地理解数据集的标注质量。数据集的发布地址提供了便捷的途径供用户下载和使用这些宝贵的资源。尽管数据集不保证任何模型训练或权重文件的精度,但提供准确且合理标注的图片,为缺陷检测算法的开发和优化提供了坚实的基础。 智慧工厂机械铸件缺陷检测数据集为相关研究与开发工作提供了丰富、详实的标注资源,通过专业格式和明确的类别划分,有效支持了机器视觉和智能检测技术在工业生产中的应用。
2025-07-23 18:07:56 2.09MB 数据集
1
变电站缺陷检测数据集是针对电力设施运行安全的重要研究工具,其包含了8307张图片,涵盖了17个不同的缺陷类别。这一数据集可适用于两种主要的目标检测格式:Pascal VOC格式和YOLO格式,但不包括图像分割所需路径的txt文件。每张图片都与相应的VOC格式的xml标注文件和YOLO格式的txt标注文件相匹配,后者仅用于记录标注目标的边界框信息。 数据集中的标注类别共计17个,覆盖了变电站中可能出现的各类常见缺陷。具体类别及其框数如下:变电站母线排母线缺陷(bj_bpmh)869个框、变电站母线排连接点缺陷(bj_bpps)723个框、变电站位置开关缺陷(bj_wkps)523个框、变电站导线与设备连接缺陷(bjdsyc)789个框、高压母线缺陷(gbps)654个框、变压器金属护板腐蚀(hxq_gjbs)1174个框、变压器金属护板压痕(hxq_gjtps)106个框、接地线缺陷(jyz_pl)410个框、开关柜与保护屏位置缺陷(kgg_ybh)362个框、设备三相不平衡缺陷(sly_dmyw)833个框、瓦斯抽采系统缺陷(wcaqm)567个框、无功补偿装置缺陷(wcgz)815个框、线路板缺陷(xmbhyc)383个框、绝缘子缺陷(xy)607个框、氧化锌避雷器缺陷(yw_gkxfw)729个框、硬母线缺陷(yw_nc)883个框、氧化锌避雷器瓷套污秽缺陷(ywzt_yfyc)331个框。所有类别的缺陷总框数达到10758个。 为了提升缺陷检测的准确性和效率,数据集的标注工作采用了labelImg这一广泛使用的工具进行。图像示例下载地址提供了一个可访问的链接,方便研究人员下载样本进行预览或进一步分析。 这一数据集的出现,对于电力行业自动化检测技术的发展具有重要的促进作用。它的精确分类和大量标注使得基于深度学习的图像识别模型能够在变电站缺陷检测领域进行有效的训练和验证,从而在电力系统运行维护中发挥积极的作用,提高电网运行的稳定性和安全性。
2025-07-22 16:56:35 1.58MB 数据集
1
COMSOL空气耦合超声仿真模型系列:多模态缺陷检测与表征技术,基于COMSOL的空气耦合超声仿真模型:涵盖Lamb波、纵波穿透及表面波检测多种应用,comsol空气耦合超声仿真模型 图1为空气耦合超声A0模态Lamb波检测2mm厚铝板内部气泡的模型。 (模型编号:1#) 图2为三维空耦导波检测2mm铝板,为节约内存,发射端含空气,未设缺陷,入射角可调。 (模型编号:2#) 图3为空气耦合超声纵波穿透法C扫(其中的一个1mm间隔线扫)检测2mm厚钢板内部气泡的模型。 分单点测量和参数化扫描两种 (模型编号:3#) 图4为空气耦合超声表面波法检测表面开口裂纹缺陷模型。 若无缺陷,右侧接收探头能接收到正常波形。 (模型编号:4#) 图5和图6分别为变厚度弯曲钢板有 无气泡缺陷时的的纵波穿透法模型。 (模型编号:5#) 注:这5个现成的模型中,二维,三维都有,请对应拿后,收到模型点计算跑完即可出结果。 ,comsol; 空气耦合超声; 仿真模型; 检测; 模型编号; 模态Lamb波; 气泡; 三维空耦导波; 发射端; 入射角; 单点测量; 参数化扫描; 纵波穿透法; 表面开口裂纹缺陷。,
2025-07-13 22:45:01 6.41MB sass
1
建筑物损坏缺陷识别检测数据集是一种专门为了训练计算机视觉模型而准备的资料集合。这些数据集一般包含了大量与建筑物损坏相关的图片以及相应的标注信息,用于训练模型识别和定位建筑物的不同损坏类型。这些损坏可能包括裂缝、剥落、结构变形、锈蚀、渗漏等各种建筑病害。在建筑行业,这样的数据集对于提高建筑安全性、进行结构健康监测以及预防性维护等方面具有重要价值。 yolo模型是一种流行的深度学习目标检测算法,能够实时地从图像中识别和定位目标对象。它通过在图像中划分网格并预测每个网格中的目标边界框和类别概率来工作。该模型训练完成后,能够在新的图像中检测并识别出与训练数据集相似的建筑物损坏缺陷。 在本数据集中,图像文件通常以.jpg或.png格式存在,每张图像对应一个或多个损坏缺陷。而labels文件则以.txt格式存储,里面包含了对应图像中每个损坏缺陷的位置和类别信息。这些标注信息用于训练时让模型了解每一个目标应该在图像中的什么位置以及它们是什么。 为了方便使用,该数据集可能还包含了格式转换脚本。这些脚本的作用是将标注文件转换成适用于yolo模型训练的特定格式,或者用于将数据集中的图像转换为模型训练所需要的分辨率。这样的转换工作对于数据预处理非常重要,可以确保模型训练的有效性和准确率。 使用这些数据集和脚本训练出来的模型,可以被集成到各种应用中,如无人机建筑巡检、移动设备现场评估以及安全监控系统中。它们能够快速检测并报告出建筑结构的健康状况,为建筑维护工作提供技术支持。 这种数据集的广泛使用,不仅提高了建筑物检测的效率和准确性,还能够在某些情况下避免人为的疏漏。随着技术的进步,基于深度学习的建筑物损坏缺陷识别技术将会变得越来越精确,越来越智能,这将在保障人民生活安全和财产安全方面发挥更大的作用。 此外,这些数据集在学术界和工业界都有广泛的应用。研究人员可以使用这些数据集来测试新的算法或者改进现有算法的性能。在工业界,它们可以被集成到更复杂的系统中,为建筑物的定期检查和维护提供帮助。通过精确的缺陷检测,能够帮助工程师评估建筑物的寿命和安全性,预防可能的灾难性事故。
2025-07-11 08:53:03 387B yolo 建筑物损坏
1
在软件开发和系统维护过程中,遇到有缺陷的文件是十分常见的情况。这些缺陷通常被称为bug,它们可能是由代码错误、设计疏漏或者不恰当的使用环境导致的。对于开发者而言,识别和解决这些bug是提升产品稳定性、性能和用户体验的关键步骤。 在本案例中,提到的文件名为“9.2.1 STM32F407 - freertos_lvgl”,这个文件名称暗示了它与STM32F407微控制器平台和freeRTOS操作系统有关。此外,Lvgl是一个开源的嵌入式图形库,通常用于嵌入式设备的用户界面设计。可以推测,这个文件可能是用来实现STM32F407微控制器上带有图形用户界面的多任务应用程序。 在解决这类bug时,首先应该重复尝试重现问题,这一步骤对于理解bug的触发条件至关重要。有时候,开发者可能需要依赖特定的硬件或软件配置来准确模拟出问题发生的情形。通过调试工具和日志记录来收集更多有关bug的信息,包括但不限于错误信息、异常代码和系统状态。这些信息将帮助开发者定位问题的根源,并着手修复。 在分析和修复过程中,开发者应遵循一定的调试策略,比如:修改代码后进行小范围测试以确保改动正确,然后逐步扩大测试范围直至问题解决或确认bug的性质。在处理硬件相关的bug时,还可能涉及到硬件的校准或替换部件。 最终,修复bug后需要进行彻底的回归测试,确保修改没有引入新的问题。此外,记录详细的bug处理过程不仅有助于问题解决后的经验分享,也为未来可能出现的类似问题提供参考。在这种情况下,创建文档或者更新现有文档是十分必要的。 与此同时,开发者还应当考虑bug的预防措施。对于重复出现的bug,应该考虑在开发流程中增加自动化测试,比如单元测试和集成测试,来提前捕捉类似问题。而对于那些由于用户使用不当导致的bug,可以通过用户教育、更清晰的用户界面提示或者更健壮的错误处理机制来缓解。 此外,对于本案例中的STM32F407这类嵌入式系统,硬件的稳定性和性能优化也同样是防止bug的关键。在硬件设计时考虑系统的稳定性和故障的可预测性,以及在软件层面优化内存和处理器资源的使用,都有助于降低bug的发生率。 对于团队协作开发的情况,确保团队成员之间的有效沟通,共同维护好代码库和开发文档,这样在问题出现时可以快速定位问题所在,并且减少因误解而导致的新bug产生。 处理软件和系统中的bug是一个复杂且持续的过程,需要开发者具备耐心、细致以及解决问题的能力。通过不断的实践和学习,可以逐渐提升软件的质量和团队的开发效率。
2025-07-05 07:10:28 40.21MB
1