面对校园出现的新情况、新挑战,学校最期待改进的主要围绕着设备系统的性能展开,包括准确率、稳定性、扩展性、开放性及和实际应用需求的贴合度等。针对校园存在的情况,通过“5G+AI智能技术”支持诞生的智慧校园解决方案 【5G AI智慧校园解决方案】是现代教育领域中一项创新技术的应用,旨在解决传统校园面临的诸多挑战,如网络维护困难、信息孤岛、无线网络接入问题以及资源利用效率低下等。该方案结合了5G通信技术和人工智能(AI),旨在提升教育质量和管理效率。 在4G时代,智慧教育建设虽然取得了一定的进步,但依然存在一些痛点。网络维护困难,各业务系统间存在信息孤岛,导致数据无法有效整合和利用。新业务需求的时延和带宽要求难以满足,如8K视频、AR/VR教学、人脸识别等,这些都需要大带宽和低时延的支持。此外,无线网络的高并发接入问题也是个难题,WiFi网络的覆盖和切换不稳定,且数据传输安全性不足。学校机房的建设和维护成本高,资源共享困难。 5G的到来为智慧教育带来了新的机遇。5G的高带宽、海量连接和低时延特性,能够支持高清音视频的实时交互,实现AR沉浸式教学,同时支持远程自然交互式的教学体验,如全息投影,使得远程教育更加生动。此外,5G还能实现泛在无线接入,便于移动式远程教学,如应急救灾现场的教学。通过5G接入,教学设备可以快速部署,减少重复建设,降低成本。 AI与大数据的结合则为教育提供了更精细化的分析。AI+大数据分析能打造全景式的大数据校园驾驶舱,实时监测各项数据,为精准教学、智能辅导、智能批改提供支持,实现教学质量的提升和管理效率的优化。同时,智慧校园的网络架构建设,如区域数据中心,有助于数据的统一管理和应用的集成,形成一个全面覆盖的智慧教学系统。 智慧校园解决方案还包括智能考勤、电子班牌、人脸识别和行为分析,以增强校园安全。例如,通过人脸识别技术进行智能考勤,利用行为分析技术预防潜在的安全风险。此外,5G技术与AI的结合还实现了校园安防的智能化,如移动视频监控、自主定位导航,以及无人机、摩托车等立体巡防,确保校园安全。 5G AI智慧校园解决方案通过技术创新,旨在构建一个高效、安全、智能的教育环境,提高教学质量和管理水平,满足未来教育多元化、个性化的需求,推动教育信息化向更高层次发展。
2024-08-03 14:25:05 5.17MB
1
现有csv格式的数据集,它的属性:date_time id shop_name title sku_name price sold discount brand parameter 分别对应: date_time:月份(例如:2020年11月) id:商品id shop_ name:店铺名称 title:商品标题 sku_name:sku标题 price:商商品单价(定价、原价) sold:商品销量 discount:商品折扣(空值表示未享受折扣) brand:商品品牌 paraneter商品考数(包含生产个业和商品品牌等信息) 1.对店铺进行分析,一共包含多少家店铺,各店铺的销售额占比如何?给出销售额占比最高的店铺,并分析该店铺的销售情况。 2.对所有药品进行分析,一共包含多少个药品,各药品的销售额占比如何?给出销售额占比最高的10个药品,并绘制这10个药品每月销售额曲线图。 3.对所有药品品牌进行分析,一共包含多少个品牌,各品牌的销售额占比如何?给出销售额占比最高的10个品牌,并分析这10个品牌销售较好的原因?
2024-07-28 16:36:36 4.87MB 数据分析 数据集 健康医疗
1
1.版本:matlab2022A,包含仿真操作录像和代码中文注释,操作录像使用windows media player播放。 2.领域:5G-noma通信,SCMA编译码 3.内容:基于5G-noma通信系统的SCMA算法matlab仿真。稀疏码分多址(SCMA)是一种新型非正交多址技术,具有过载通信的特点。 PRE_o=zeros(PAR.FN,PAR.Data_length); for data_ind=1:PAR.Data_length for v=1:PAR.VN PRE_o(:,data_ind)=PRE_o(:,data_ind)+PAR.CB(:,data_source(v,data_ind),v); end end 4.注意事项:注意MATLAB左侧当前文件夹路径,必须是程序所在文件夹位置,具体可以参考视频录。
2024-07-28 11:06:29 271KB matlab
1
CentOS7版本:CentOS Linux release 7.9.2009 (Core) 网卡版本:Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8125 2.5GbE Controller (rev 05) 安装步骤: 1.在BIOS中关闭Secure Boot,不关闭的情况下驱动安装成功也无法联网。 2.在packages目录下执行 rpm -Uvh *.rpm --nodeps --force 3.成功后执行 rm -f /lib/modules/$(uname -r)/build ln -s /usr/src/kernels/$(uname -r)/ /lib/modules/$(uname -r)/build 4.在r8125-9.011.01目录下执行 sh autorun.sh 安装成功后将会自动连接有线网络。 具体可参考网址:https://blog.csdn.net/asdasdsaff/article/details/132687312
2024-07-23 17:02:42 55.41MB linux 网络 网络
1
如今,心血管类疾病已经成为威胁人类身体健康的重要疾病之一,而清晰有效的心电图为诊断这类疾病提供了依据,心电采集电路是心电采集仪的关键部分,心电信号属于微弱信号,其频率范围在0.03~100 Hz之间,幅度在0~5 mV之间,同时心电信号还掺杂有大量的干扰信号,因此,设计良好的滤波电路和选择合适的控制器是得到有效心电信号的关键。基于此,本文设计了以STM32为控制核心,AD620和OP07为模拟前端的心电采集仪,本设计简单实用,噪声干扰得到了有效抑制。   1 总体设计方案   心电采集包括模拟采集和数字处理两部分,本设计通过AgCl电极和三导联线心电采集线采集人体心电信号,通过前置放大电路
2024-07-10 12:18:11 273KB 医疗电子
1
基于深度学习的医疗图像分割综述 深度学习技术的崛起为医疗图像处理带来了革命性的变革,尤其是在图像分割领域。本次综述将对基于深度学习的医疗图像分割技术进行详细的介绍和分析。 医疗图像分割的应用 医疗图像分割技术可以帮助医生更准确地诊断病情,进行更精确的手术导航,以及开展其他重要的医学应用。医疗图像分割的应用包括: 1. 医学影像诊断:在医学影像诊断中,图像分割技术可以帮助医生将图像中的病变区域与正常组织区分开来,从而提高诊断的准确性。例如,CT扫描中的肿瘤分割,X光中的肺炎分割等。 2. 手术导航:在手术导航中,医生可以使用图像分割技术来创建3D模型,以便在手术过程中更好地理解患者内部的结构。这可以帮助医生更精确地定位病变区域,并提高手术效率。 3. 病理分析:在病理分析中,图像分割技术可以帮助医生将组织样本分成不同的区域,以便更好地理解疾病的发展过程和治疗效果。 深度学习模型概述 深度学习模型是基于深度学习的医疗图像分割技术的核心。常见的深度学习模型包括: 1. U-Net:U-Net是最常用的医疗图像分割模型之一。它是一个全卷积网络(FCN)的变种,具有一个收缩路径(编码器)和一个扩展路径(解码器),形状像字母“U”。U-Net能够捕获图像的上下文信息和位置信息,具有良好的空间一致性。 2. ResNet:ResNet是一种残差网络,通过引入残差块来帮助模型更好地学习和表示图像特征。ResNet的引入提高了模型的表达能力和泛化性能,使得模型能够更好地处理复杂的医疗图像数据。 3. EfficientNet:EfficientNet是一种新型的神经网络架构,旨在平衡模型的大小、性能和精度。它通过改变网络结构,使用更少的计算资源来达到更好的性能。在医疗图像分割中,EfficientNet具有广泛的应用前景。 4. Transformer:Transformer模型在自然语言处理领域取得了巨大成功。由于其具有全局信息交互的能力,Transformer也被引入到图像分割任务中。例如,ViT(Vision Transformer)就被应用于医疗图像分割任务中,取得了较好的效果。 训练和优化方法 训练和优化方法是基于深度学习的医疗图像分割技术的重要组成部分。常见的训练和优化方法包括: 1. 数据增强:由于医疗图像数据集通常较小,为了提高模型的泛化性能,通常会使用数据增强技术来扩充数据集。这包括旋转、缩放、裁剪、翻转等操作。 2. 损失函数:在训练过程中,损失函数被用来衡量模型的预测结果与真实标签之间的差距。常用的损失函数包括交叉熵损失、Dice损失、IoU损失等。 3. 优化算法:常见的优化算法包括随机梯度下降(SGD)、Adam、RMSProp等。这些算法可以帮助我们调整模型的参数,以最小化损失函数。 挑战和展望 基于深度学习的医疗图像分割技术仍然面临着许多挑战和挑战。例如,医疗图像数据集的获取和标注、模型的泛化性能、计算资源的限制等。然而,基于深度学习的医疗图像分割技术也展望了广泛的应用前景,例如医学影像诊断、手术导航、病理分析等。
2024-07-09 16:00:15 2.4MB
1
用户名:admin密码:111111
2024-07-01 17:12:52 2.17MB Java
1
Pandas+python可视化技术对医疗数据进行数据与处理、数据分析、数据可视化
2024-06-22 17:58:40 82.96MB
1
项目进度网络图(表)是项目进度管理过程组的关键内容。 通过不同的人员赛道,每个赛道都对饮从项目启动到结束五大过程组,并在每个过程组中,有分别执行不同的过程,在加入时间维度,就可以预估项目各个阶段结束的时间。 项目管理过程中,进度管理基本上是首要内容,如何在规定的时间完成任务,就需要对任务进行拆解,再根据经验+基础条件(人员/项目规模/项目采购的内容),进行进度安排。 在项目初期就要完成项目进度的安排,再拆分好每个阶段的大致任务,进入项目后再拆分WBS,要使每个项目组成员都有确定的进度目标,否则进度肯定会拉跨。 上述项目进度图是根据根据之前医疗行业工作经验制作。(个人制作,不涉及公司资产)
2024-06-11 13:17:34 523KB 项目管理
1
适用于5G无线网络优化工程人员
2024-05-28 22:30:01 1.02MB
1