内容概要:本文详细介绍了基于最小二乘法对永磁同步电机(PMSM)进行转动惯量辨识仿真的方法。首先构建了仿真架构,采用Simulink平台,利用Simscape Electrical中的PMSM模块作为电机模型,重点在于右侧的递推最小二乘辨识器。文中提供了完整的S函数代码实现,用于更新转动惯量估计值,并讨论了关键参数如P矩阵初始化值和遗忘因子的选择。此外,还强调了加速度信号滤波的重要性以及如何应对负载惯量突变的情况。最后展示了仿真结果,验证了所提方法的有效性和准确性。 适合人群:从事电机控制研究的技术人员、高校相关专业师生、对永磁同步电机控制感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解永磁同步电机转动惯量在线辨识机制的研究者;旨在帮助读者掌握最小二乘法的具体应用技巧,提高实际项目中的参数辨识能力。 其他说明:文中提到的仿真文件可在GitHub获取,同时推荐了相关书籍供进一步学习。
2025-09-11 18:19:41 365KB 最小二乘法 参数辨识 控制系统仿真
1
基于最小二乘法的永磁同步电机(PMSM)转动惯量辨识仿真的构建方法。首先,作者利用Simulink平台,采用Simscape Electrical中的PMSM模块作为电机模型,重点在于右侧的绿色模块——递推最小二乘辨识器。该辨识器通过S函数实现,能够实时更新转动惯量的估计值。文中提供了详细的S函数代码,解释了每个部分的功能以及参数的选择依据。此外,还强调了对加速度信号进行滤波处理的重要性,以减少噪声对辨识结果的影响。最后,展示了仿真结果,验证了该方法的有效性和准确性。 适合人群:从事电机控制研究的技术人员、高校相关专业师生、对永磁同步电机控制感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解PMSM转动惯量辨识原理的研究人员和技术开发者。通过本仿真可以掌握最小二乘法的具体实现方式,了解如何优化参数选择以提高辨识精度。 其他说明:文中提到的仿真文件已上传至GitHub,可供读者下载并进一步探索。同时推荐了相关书籍作为深入学习的资料来源。
2025-09-11 18:17:20 423KB 最小二乘法 参数自适应
1
内容概要:本文详细介绍了利用博途PLC(特别是S7-1500型号)、丹佛斯变频器FC302以及SEW三相异步电机组成的控制系统中,通过SCL代码实现Sinx*Sinx形式的S型速度曲线控制方法。重点在于如何通过这种特殊的数学模型来确保速度变化过程中加速度和平滑度的最佳表现,从而减少机械系统的冲击力。文中不仅提供了具体的SCL代码片段,还分享了一些实际调试的经验教训,如变频器参数设置、HMI监控点配置等。此外,作者还提到了该技术在一个轮胎生产线上成功应用的数据支持,证明了其有效性。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些对PLC编程、变频器调校以及机电一体化感兴趣的读者。 使用场景及目标:适用于需要精确控制电机速度和位置的应用环境,特别是在频繁启停的情况下可以显著提高效率并延长设备使用寿命。主要目的是帮助读者掌握一种新的速度曲线控制思路,即利用正弦函数构建更加平滑稳定的加减速过程。 其他说明:需要注意的是,尽管文中提供的解决方案非常有效,但在具体实施前仍需进行充分的风险评估和测试验证,避免因不当操作造成损失。同时,对于不同类型的机械设备而言,选择合适的速度曲线至关重要,因此文中也强调了‘没有绝对最优解’的观点。
2025-09-11 17:38:06 1.22MB
1
内容概要:本文详细介绍了如何利用SCL代码在PLC 1200/1500中实现S型速度曲线控制,以优化电机启停性能。文中通过具体案例展示了如何使用正弦函数构建加减速曲线,解决了传统梯形速度曲线带来的机械冲击问题。文章提供了完整的SCL代码示例,涵盖了加速、匀速和减速三个阶段,并讨论了实际调试过程中需要注意的关键点和技术细节,如变频器参数配置、中断周期调整以及误差补偿方法。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和变频器控制的专业人士。 使用场景及目标:适用于需要频繁启停的机械设备,如焊接机械手、涂胶机器人、轮胎生产线等。主要目标是提高设备的运行稳定性、减少机械冲击、提升定位精度和响应速度。 其他说明:文中提到的具体实现方法和技巧不仅限于特定品牌或型号的PLC,而是具有一定的通用性和扩展性。同时,作者强调了实际应用中的注意事项,如参数选择、硬件兼容性等问题,确保方案能够顺利实施并取得预期效果。
2025-09-11 17:36:23 1.97MB
1
内容概要:本文详细介绍了野火无刷电机驱动板的设计与实现,涵盖PCB布局、电源电压检测、电机电流检测和PWM控制信号等方面。PCB设计方面,强调了电源线路的宽裕布线和去耦电容的应用,以减少电源噪声。电源电压检测通过电阻分压和ADC采样实现,确保电压稳定。电机电流检测利用采样电阻和INA240运放,精确监测电流变化。PWM控制则通过定时器的互补输出模式,实现对电机转速的精准调节。此外,文中还提供了具体的代码示例,帮助理解和应用这些功能。 适合人群:对电机控制有一定兴趣的技术爱好者、工程师及学生。 使用场景及目标:适用于学习和研究无刷电机驱动板的工作原理和技术细节,帮助开发者更好地理解和优化电机控制系统。 其他说明:文章不仅讲解了理论知识,还结合实际案例和代码示例,便于读者动手实践。同时,文中提到的一些硬件设计技巧和注意事项也非常实用,有助于提高系统的稳定性和性能。
2025-09-11 14:44:26 15.35MB
1
四轮轮毂电机驱动车辆横摆力矩与转矩矢量分配控制仿真研究:滑模与PID联合控制策略及力矩分配方法探究。,四轮轮毂电机驱动车辆DYC与TVC系统分层控制策略仿真研究:附加横摆力矩与转矩矢量分配控制方法探索。,四轮轮毂电机驱动车辆直接横摆力矩控制(DYC),转矩矢量分配(TVC)的仿真搭建和控制 整体采用分层控制策略。 其中顶层控制器的任务是利用车辆状态信息、横摆角速度以及质心侧偏角的误差计算出维持车辆稳定性的期望附加横摆力矩。 为了减少车辆速度影响,设计了纵向速度跟踪控制器;底层控制器的任务是对顶层控制器得到的期望附加横摆力矩以及驱动力进行分配,实现整车在高速地附着路面条件下的稳定性控制。 顶层控制器的控制方法包括:滑模控制(SMC)、LQR控制、PID控制、鲁棒控制(发其中一个,默认发滑模和pid控制器)等。 底层控制器的分配方法包括:平均分配、最优分配,可定制基于特殊目标函数优化的分配方法(默认发平均分配)。 说明:驾驶员模型采用CarSim自带的预瞄模型(Simulink驾驶员模型请单独拿后);速度跟踪可加可不加,采用的是PID速度跟踪控制器。
2025-09-11 14:14:17 1.52MB 开发语言
1
四轮轮毂电机驱动车辆直接横摆力矩控制(DYC),转矩矢量分配(TVC)的仿真搭建和控制 整体采用分层控制策略。 其中顶层控制器的任务是利用车辆状态信息、横摆角速度以及质心侧偏角的误差计算出维持车辆稳定性的期望附加横摆力矩。 为了减少车辆速度影响,设计了纵向速度跟踪控制器;底层控制器的任务是对顶层控制器得到的期望附加横摆力矩以及驱动力进行分配,实现整车在高速地附着路面条件下的稳定性控制。 顶层控制器的控制方法包括:滑模控制(SMC)、LQR控制、PID控制、鲁棒控制(发其中一个,默认发滑模和pid控制器)等。 底层控制器的分配方法包括:平均分配、最优分配,可定制基于特殊目标函数优化的分配方法(默认发平均分配)。 说明:驾驶员模型采用CarSim自带的预瞄模型(Simulink驾驶员模型请单独拿后);速度跟踪可加可不加,采用的是PID速度跟踪控制器。 Simulink模型包括:理想状态计算模块、速度跟踪模块、轮毂电机模型、顶层控制器、底层控制器。 Simulink以及CarSim联合仿真进行验证,效果良好。 保证运行成功。
2025-09-11 14:12:32 368KB
1
三相异步电机本体模型在Matlab/Simulink平台上的构建与仿真分析。首先,文章概述了三相异步电机模型的背景和技术意义,强调了其在电机性能研究、优化设计和故障预测方面的重要性。接着,文章阐述了模型的数学原理,解释了如何通过精确的数学公式来构建电机模型,确保每个波形参数(如电压、电流)的准确性。然后,文章展示了仿真的具体效果,包括电机在不同工况下(如启动、运行、制动)的波形变化规律,使研究人员能更好地理解电机的运行原理。最后,文章讨论了该模型的实际应用价值,指出它可以用于企业或实验室的研究,帮助优化设计方案和进行故障预测。 适合人群:从事电机研究、设计和维护的技术人员,尤其是那些希望深入了解三相异步电机性能的专业人士。 使用场景及目标:①研究电机本体性能,优化设计方案;②进行故障预测,提高电机可靠性;③教学和培训,帮助学生掌握电机仿真技术。 其他说明:该模型不仅适用于学术研究,还可在工业环境中广泛应用,为企业提供技术支持。
2025-09-11 11:52:25 962KB
1
【小信号阻抗模型验证 频率扫描】 复现SCI、电机工程学报等顶刊lunwen,认准高质量模型和讲解服务 提供程序化扫频程序(simulink模型及PSCAD模型均可);全频段扫频模型,扫频精度极高;序阻抗 dq阻抗;原创成果,可提供详细讲解指导 提供FFT分析、传递函数计算、测量阻抗计算程序 程序化扫频方式相比于人工扫频快捷、方便,可程序化操作、一键运行,且更具有实用性和一般性。 [钉子]适用于mmc vsc lcc等变流器、PLL等元件、ac ac、dc dc、ac dc、dc ac等拓扑,以及直流输电、柔直、新能源(风电 光伏 单机 多机)、配电网、微电网等各类应用场景。
2025-09-10 17:45:18 472KB edge
1
基于PMSM的考虑电流采样延时及一延时补偿的电机控制Simulink模型(含低通滤波器与死区模块),2018b版PMSM电机控制模型:考虑电流采样延时及多模块优化的离散化仿真系统,该模型为考虑电流采样延时的电机控制simulink模型。 模型架构为PMSM的传统双闭环(PI调节器)控制(版本2018b),模型中还包括以下模块: 1)考虑电流采样延时的中断触发模块 2)转速计算的低通滤波器 3)1.5延时补偿模块 4)死区模块 该模型特色为:考虑电流采样延时、考虑了转速计算的低通滤波器、控制系统的一延时,所以该模型能够尽可能去还原实际的电机控制。 系统已经完全离散化,与实验效果非常接近。 ,会将simulink仿真模型打包发送。 ,核心关键词:电流采样延时;PMSM;双闭环控制;PI调节器;低通滤波器;1.5延时补偿;死区模块;系统离散化。,Simulink电机控制模型(含延时补偿及低通滤波)
2025-09-10 17:18:24 4.6MB ajax
1