基于F28335与F2812的DSP变频器SVPWM源码工程文件 内置多重功能,搭载浮点运算库,TMS实战编码与EEPROM存储参数支持,DSP程序定制 F28335 F2812 简易变频器svpwm源码 简易变频器C语言源代码工程文件,直接用ccs3.3以上软件打开。 包括SVPWM核心代码,有运行频率设置、载波频率(2.5K~20KHz)设置、电机额定频率和额定电压设置、加减速时间设置、输入输出电压设置、低频电压补偿设置、EEPROM参数存储等等。 使用浮点快速运算库,SVPWM部分运行一次时间为2.79uS。 用TM1638 作键盘和8位数码显示,全部自编源码,不使用官方现成功能模块,方便你学习和了解变频器的编程方法,也方便移植到其它芯片系列。 对时序要求较高的代码放在RAM内运行。 代码已经过硬件验证,非纸上谈兵。 ,核心关键词:DSP程序定制; F28335; F2812; 简易变频器; SVPWM源码; C语言源代码; ccs3.3软件; 运行频率设置; 载波频率设置; 电机额定参数设置; 加减速时间设置;
2025-04-18 10:00:42 919KB 柔性数组
1
在本文中,我们将深入探讨中国行政区划代码的重要性、组成以及其在不同行政级别上的应用和影响。中国是一个拥有广阔领土和庞大人口的国家,为了有效管理,国家在行政区划上实行了严格的分层制度。从省、市、区县、乡镇到村委会,每一级都有其独特的行政区划代码,以满足日常行政管理、数据统计和社会服务等多方面的需求。 我们需要了解什么是行政区划代码。行政区划代码是一组标准化的数字或字母,用以唯一标识一个行政区域。在中国,这些代码通常由六位数字组成,其中前两位代表省级行政单位,第三、四位代表市级,第五、六位代表区县级。这种编码方式有助于快速识别和处理来自全国不同地区的行政信息。 在省级行政单位层面,全国被划分为31个省、自治区和直辖市,它们构成了中国行政区划的最顶层。在这些省级单位下,分布着数百个地级市、自治州和盟,它们进一步被划分为上千个县级单位,包括市辖区、县、自治县、县级市等。县级单位之下,有数万个乡镇级单位,包括街道办事处、镇、乡、民族乡等。而乡镇级单位之下,是基层群众自治组织,如村委会和居委会,它们是最接近民众的行政管理单元。 在现代社会,行政区划代码的应用范围非常广泛。它们不仅用于政府机关内部的信息管理系统,也用于企业、学校、医院等各种社会组织的日常运作。例如,在邮寄快递、登记户口、办理各种证件、进行人口普查、征收税费、规划城市建设和管理土地资源时,都需要使用到准确的行政区划代码。 行政区划代码的存在,使得国家能够更加高效地收集和分析统计数据。这些数据对于国家的宏观经济决策、区域发展战略制定、资源分配等具有重要的参考价值。通过准确的行政区划代码,政府可以更好地实施行政管理,提高公共服务的效率和质量。 在技术层面上,行政区划代码还与地理信息系统(GIS)等现代信息技术紧密相连。GIS可以将地理空间信息与行政区划代码相结合,为城市规划、交通管理、灾害预警和应对、环境监测等领域提供支持。此外,行政区划代码还是国际交流中提供标准地理信息的基础,有助于中国在国际上进行数据共享和交流。 中国的行政区划代码不是一成不变的。随着经济社会的发展和行政区划的调整,行政区划代码也会相应更新。这就要求政府相关部门在制定和修订行政区划代码时,必须遵循科学、合理、稳定、易操作的原则,确保代码的连续性和继承性,避免给社会管理和民众生活带来不便。 中国各级行政区划代码的重要性不言而喻。它们为国家的行政管理、社会服务、数据统计和国际交流等提供了重要的基础支持。掌握行政区划代码的相关知识,不仅对于政府工作人员来说是必要的,对于普通公民来说也是一种必要的生活技能。随着信息技术的不断进步,未来行政区划代码的应用将会更加广泛,对于提升社会管理效能和促进社会发展将发挥更加重要的作用。
2025-04-17 03:52:48 24.38MB 区划代码 行政区划编码 统计数据
1
根据提供的文件信息,文章标题是《动态自适应Pattern时延差编码水声通信》,该标题意味着文章将探讨一种在水声通信领域内使用的新型编码技术。描述部分简单重申了标题,并指出该文章是一篇研究论文。接下来,我们将基于标题和描述以及所提供的部分内容,详细解释这一技术的背景、原理、实现方法以及可能的应用场景。 要理解动态自适应Pattern时延差编码技术,我们需要先了解水声通信的基本概念。水声通信是利用声波在水下进行信息传输的一种方式。由于水下环境的特殊性,它对信号的传播特性和通信系统的可靠性有着极大的影响。水声通信技术面临的挑战包括信号在水下的衰减、多途效应、噪音干扰等问题。 在这篇文章中,作者提出了一种动态自适应的编码方法,用以改善水声通信的性能。传统的水声通信中,时延差编码(Pattern Time Delay Shift Coding, PDS)是一种常见的技术,它通过对信号的时延进行编码,实现通信。然而,这种技术存在的问题是其编码方法无法适应水声信道和收发节点运动带来的变化。为了解决这一问题,Zhao Anbang等人提出了一种动态自适应的解码方法。 动态自适应解码方法的核心思想是使用可变长度的滑动窗口技术动态搜索携带信息的每种模式码,并实时根据解码结果修正下一个码的偏差,从而将有用的信息尽可能多地发送给解码相关器。这种自适应方法可以适应由于收发节点的运动和水声信道的变化带来的影响,显著提高了系统的性能。 从文件提供的部分内容来看,文章发表在2010年8月的《西安交通大学学报》上,作者是来自哈尔滨工程大学水声技术国家实验室的研究人员。文章中提到了对动态自适应解码方法进行的实地试验,试验地点是位于吉林省的松花江。试验结果显示,在通信距离为1500米时,动态自适应解码方法的比特误码率为零,即使在1000米的通信距离下,比特误码率也远低于常规解码方法。这表明新方法在提高水声通信可靠性方面的巨大潜力。 关键词部分揭示了文章的主要研究方向,包括水声通信、模式时延差编码和动态自适应技术。这些关键词也指出了文章将讨论的核心内容和技术领域。 根据文章的研究成果,可以预见,动态自适应Pattern时延差编码技术将为水声通信系统的可靠性和效率提供坚实的基础,尤其是在高速和抗干扰通信网络的设计中。随着水下作业和海洋探测的需求增长,这样的技术将具有广泛的应用前景,比如在海洋资源勘探、水下机器人通信、以及军事领域的水下通信等场景。 文章中还提到了一些技术参数和实验设置,例如声码器的参数、采样频率和信号处理的细节。这些细节是理解文章具体实现方法和技术机制的关键。例如,提到了使用2n-1个时延元素进行编码,以及采用某种特定的算法来调整时延值。这些都反映了在实际应用中处理信号时所需要关注的技术细节。 文件信息中提到的内容是OCR扫描出的文档部分文字,可能存在个别字识别错误或遗漏,但整体上不影响我们对文章主旨的理解。通过对标题、描述、标签和部分内容的分析,我们可以得出结论,这篇文章介绍了一种通过动态自适应解码技术来提高水声通信性能的新方法,并通过实验验证了其有效性。这项研究工作不仅推动了水声通信技术的发展,也为未来的相关研究和应用提供了宝贵的参考。
2025-04-15 20:05:54 291KB 研究论文
1
深度学习的思想就是对堆叠多个层,也就是说这一层的输出作为下一层的输入。通过这种方式,就可以实现对输入信息进行分级表达了。另外,前面是假设输出严格地等于输入,这个限制太严格,我们可以略微地放松这个限制,例如我们只要使得输入与输出的差别尽可能地小即可,这个放松会导致另外一类不同的DeepLearning方法。上述就是DeepLearning的基本思想。 ### 深度学习理论学习笔记 #### 一、概述 人工智能(Artificial Intelligence, AI)作为一项前沿技术,一直是人类追求的梦想之一。虽然计算机技术取得了显著进步,但在真正意义上实现具备自我意识的智能体方面仍然面临着挑战。深度学习作为一种新兴的技术,近年来在人工智能领域取得了突破性进展。 #### 二、深度学习基本思想 深度学习的核心思想在于通过构建多层的神经网络模型,每一层的输出作为下一层的输入,从而实现对输入数据的分级表示。这种方法能够有效地提取出数据中的复杂特征,进而提高模型的表现力。此外,传统的学习方法往往要求模型的输出严格匹配输入,而深度学习则放宽了这一条件,允许一定的误差,这种灵活性使得模型能够更好地适应各种复杂的任务场景。 #### 三、关键技术点 - **堆叠多层:** 深度学习通过堆叠多层神经网络来实现对数据的分级表示,每一层负责提取特定层次的特征。 - **分级表示:** 通过对输入数据进行逐层处理,模型能够从简单特征逐渐过渡到更抽象、更高级别的特征表示。 - **放松输出限制:** 相比于严格匹配输入输出的传统方法,深度学习允许输出与输入之间存在一定误差,通过最小化这种误差来优化模型。 - **非线性变换:** 在每个隐藏层中应用非线性激活函数,增加模型的非线性表达能力,使得模型能够学习更为复杂的模式。 #### 四、重要应用案例 - **Google Brain项目:** 该项目利用大规模并行计算平台训练深度神经网络(DNN),在语音识别和图像识别等任务中取得了重大突破。 - **微软同声传译系统:** 在2012年中国天津的一次活动中,微软展示了一款全自动同声传译系统,该系统集成了语音识别、机器翻译和语音合成技术,背后的支撑技术同样是深度学习。 - **百度深度学习研究所:** 百度于2013年成立了深度学习研究所(IDL),专注于深度学习的研究和应用开发。 #### 五、深度学习的优势 - **强大的特征提取能力:** 深度学习能够自动从原始数据中学习到复杂的特征表示,减少了对人工特征工程的需求。 - **大规模数据处理能力:** 结合云计算的强大算力,深度学习能够在海量数据上训练大型模型,提升模型的泛化能力。 - **广泛的应用领域:** 从计算机视觉到自然语言处理,深度学习几乎可以应用于所有需要模式识别和决策制定的任务。 #### 六、面临的挑战 尽管深度学习带来了诸多优势,但也存在一些挑战: - **数据需求量大:** 深度学习模型通常需要大量的标记数据来进行训练,这对于某些领域来说可能难以满足。 - **计算资源要求高:** 训练大型深度学习模型需要大量的计算资源,这对硬件设备提出了较高要求。 - **模型解释性差:** 深度学习模型往往是黑盒模型,缺乏透明度,这对模型的信任度和可解释性提出了挑战。 #### 七、背景与机器学习的关系 机器学习作为人工智能的一个核心分支,旨在研究如何使计算机能够自动学习并改进自身性能。随着技术的发展,机器学习逐渐演化出了深度学习这一分支,后者凭借其强大的特征提取能力和适应性,在多个领域展现出了巨大潜力。然而,传统机器学习方法在面对复杂数据时往往需要手动设计特征,而深度学习则通过自动特征学习克服了这一局限。 深度学习作为一种前沿的人工智能技术,在理论和实践上都有着重要的意义。随着技术的不断发展和完善,预计未来将在更多领域展现出其独特价值。
2025-04-15 15:14:27 2.09MB 深度学习 神经网络 稀疏编码 CNNs
1
德国ICHAUS公司的iC-PR系列蓝光反射式编码器读头是一种先进的光学编码器芯片,它采用无镜头反射式设计,具备紧凑的体积和高分辨率增量输出功能。这类产品广泛适用于开发选型,特别是在需要精确测量角度和位置的应用中。 ### 关键特性解读: 1. **无镜头设计**:这种编码器不使用镜头,与传统的透镜式编码器相比,它能减少组件数量、减小设备体积,并提供更好的信号质量。 2. **多尺寸反射码盘兼容**:iC-PR系列可以配合不同直径的反射码盘(4mm、14mm、26mm、43mm)和具有256微米周期长度的线性尺使用。 3. **集成高分辨率HDP相位阵列**:该编码器集成的HDP(高密度相位)阵列传感器能匹配优良的信号,确保输出信号的准确性与一致性。 4. **集成蓝色LED(EncoderBlue®)**:使用内置的蓝色LED作为光源,与短波长特性相匹配的增强型蓝色光敏传感器,能够提供低抖动的输出信号。 5. **低噪声放大器与高EMI耐受性**:具备高性能的低噪声信号放大器,同时也具有良好的电磁干扰(EMI)耐受能力,确保在复杂电磁环境下稳定运行。 6. **可选的多种工作模式**:通过引脚选择,该编码器支持多种操作模式,包括A/B/Z(x1, x2, x4, x8, x16插值)的数字输出,以及带有模拟或数字Z输出的模拟COS/SIN输出模式。 7. **可选的索引门控与时钟**:用户可以通过引脚选择不同的索引门控和最小边沿距离,例如:1T无门控、0.5T B门控、0.25T AB门控以及80ns、1µs和10µs的不同时间设置。 8. **互补的正交输出**:提供互补的正交输出PA、NA、PB和NB,以确保输出信号的准确性。 9. **互补的索引输出**:提供互补的索引输出PZ和NZ,增强信号的识别能力。 10. **模拟信号输出**:提供模拟信号输出,方便外部进行插值处理,从而提高对齐和分辨率。 11. **工作温度范围**:宽泛的工作温度范围,从-40°C到+105°C,适合于多种环境。 12. **紧凑的无镜头optoQFN封装**:采用紧凑的无镜头optoQFN 24引脚封装,尺寸为4mm x 4mm x 0.9mm,并且符合RoHS标准。 ### 应用领域: iC-PR系列编码器适用于多种应用,包括增量编码器、微型电机和执行器、X-Y和线性平台、工厂自动化机器人和消费型机器人等。 ### 特色封装与评估工具: 该编码器采用optoQFN24-4x4的封装,体积小,便于安装和集成。如果需要,还可以请求提供评估套件。 iC-PR系列蓝光反射式编码器读头是一系列适合多种应用的光学编码器芯片,其特点包括紧凑的设计、高质量信号输出、多样的工作模式以及宽泛的温度适用范围。通过精准的光学元件和高技术的电子设计,这款编码器能够确保精确的位置和速度测量,在自动化和机器人技术等领域有着广泛的应用潜力。
2025-04-15 09:55:07 557KB 反射式编码器
1
MATLAB与CST联合仿真快速建模超表面阵列:便捷导入编码序列,涡旋波应用助力科研提速,MATLAB与CST联合仿真快速建模超表面阵列:便捷导入编码序列,涡旋波生成与雷达散射截面优化,MATLAB联合CST进行仿真。 只需要写一个Excel,里面放你的编码序列,然后用MATLAB导入编码序列,或者你需要的超表面的排列方式。 就能够在CST里面自动生成对应的超表面阵列。 主要是针对单元个数太多,手动建模麻烦等问题。 能够用到涡旋波的生成,雷达散射截面缩减,聚焦波束等等。 无论是1比特,还是2比特,3比特等等都可以建模。 建模方式迅速,对科研帮助比较大。 ,MATLAB; CST仿真; 超表面阵列; 涡旋波生成; 雷达散射截面缩减; 聚焦波束; 编码序列; 建模效率; 科研帮助。,MATLAB驱动CST超表面自动建模工具
2025-04-14 12:28:06 2.93MB istio
1
内容概要:本文详细介绍了如何利用FPGA实现直流电机的调速系统。首先解释了选择FPGA的原因,强调其硬件并行特性的优势,如更快的响应时间和更高的稳定性。接着展示了PWM波形生成的具体Verilog代码,确保占空比更新时不产生毛刺。然后讨论了电机驱动中的注意事项,特别是死区时间的硬件实现,以避免MOS管损坏。接下来深入探讨了增量式PID控制的实现方法,包括状态机的设计和积分项的限幅处理。最后,通过实验验证了系统的性能,展示了其实现的快速响应和平滑调速效果。 适合人群:对嵌入式系统和电机控制有一定了解的工程师和技术爱好者。 使用场景及目标:适用于需要高性能电机调速的应用场合,如工业自动化、机器人等领域。目标是通过FPGA的并行处理能力,提高电机调速系统的响应速度和稳定性。 其他说明:文中提供了详细的Verilog代码片段和调试技巧,帮助读者更好地理解和实现FPGA在电机控制系统中的应用。
2025-04-11 19:10:27 607KB FPGA Verilog PID控制 PWM
1
在IT行业中,错误纠正编码(Error Correction Coding,ECC)是一种关键的技术,用于保护数据免受传输过程中的错误或丢失。RS(Reed-Solomon)编码是ECC的一种,由G. D. Reed和M. Solomon在1960年提出,广泛应用于存储系统、卫星通信、CD/DVD光盘编码等领域。本项目关注的是RS编码的纠删方法的实现,特别是针对网络数据传输中的数据丢失问题。 RS编码的核心思想是将原始数据分割成多个小的数据块,然后添加额外的校验信息,形成更长的编码数据。当数据在传输过程中出现丢失,通过这些校验信息,可以恢复原始数据。这种编码方式特别适合在网络环境中,因为网络传输可能会导致某些数据包丢失,但不影响整体数据的恢复。 在这个项目中,描述提到的"纯纠删用途"意味着代码仅专注于数据的错误恢复,而不涉及数据检测(即Berlekamp-Massey算法的去除)。Berlekamp-Massey算法通常用于RS解码过程,以找到最佳的多项式来纠正错误。不过,这个实现可能使用了其他解码策略或者简化了这个过程。 代码文件包括: 1. `rtp_rs_40.cpp`:这可能是实现RS编码核心逻辑的C++源代码文件,可能包含了生成和解码RS编码的函数,特别是针对40位数据的处理。RTP(Real-time Transport Protocol)可能是应用场景,通常用于音频和视频流的传输,需要高度可靠的纠错机制。 2. `main.cpp`:这是程序的主入口点,可能包含了一些测试用例,用于验证RS编码的纠删功能。开发者可以通过运行这个程序,模拟不同的数据丢失场景,检查RS编码是否能正确恢复原始数据。 3. `rtp_rs_40.h`:这是一个头文件,可能包含了RS编码相关的函数声明和数据结构定义,供`rtp_rs_40.cpp`和其他模块使用。 在C++实现RS编码时,通常会涉及到以下关键技术点: 1. **GF(2^n)**:RS编码基于有限域上的多项式运算,通常选择GF(2^n),其中n是用户可调节的参数。 2. **生成多项式**:根据用户指定的n和k,计算出RS编码的生成多项式,用于编码和解码过程。 3. **编码过程**:原始数据与生成多项式相乘并模2^n运算,得到编码数据。 4. **解码过程**:当接收端发现有数据丢失,使用剩余的数据和校验信息,通过特定的解码算法(如Euclidean algorithm或Syndrome-based decoding)恢复丢失的数据。 5. **数据分块和定位**:在传输前,数据会被分成固定大小的块,并分配位置信息,以便在解码时正确地重组数据。 为了理解和使用这段代码,你需要具备基本的C++编程知识,了解有限域和多项式运算,以及RS编码的基本原理。对于网络传输部分,了解RTP协议和网络数据包的处理也是必要的。通过研究和理解这些代码,你可以深入理解RS编码的工作机制,并可能将其应用到自己的项目中,提升数据传输的可靠性。
2025-04-07 17:16:02 3KB
1
《信息论与编码》是信息技术领域的一门重要课程,主要研究如何高效、可靠地传输和存储信息。这门学科由克劳德·香农在20世纪40年代创立,为现代通信和数据处理奠定了理论基础。本资料是西安电子科技大学出版的第二版《信息论与编码》的答案集,适用于最新的学习需求。 一、信源熵 信源熵是信息论中的基本概念,用于度量一个随机变量或信源的不确定性。第二章“信源熵-习题答案”中,可能会涵盖以下知识点: 1. 信源熵的定义:信源熵H(X)是表示信源X发出的每一条消息平均携带的信息量,通常用比特来衡量。 2. 条件熵:描述在已知另一个随机变量Y的情况下,随机变量X的不确定性,H(X|Y)。 3. 互信息:I(X;Y)衡量了X和Y之间的关联程度,是信源熵和条件熵的差,表示得知Y后对X的不确定性减少的程度。 4. 协方差和相关性:通过分析随机变量间的协方差和相关系数,可以理解它们之间的信息共享。 5. 麦克斯韦-布尔分布和香农熵:在离散和连续信源中,熵的计算方法不同,这部分可能包括这些特定分布的熵计算。 二、信道容量 信道容量是信道传输信息的最大速率,是信道的固有能力。第三章“信道容量-习题答案”将涉及: 1. 定义:信道容量C是无错误传输的最大信息速率,由信道特性决定。 2. 香农定理:阐述了信道容量与信道噪声的关系,表明存在一个极限速率,超过这个速率就无法保证无错误传输。 3. 信道模型:如加性高斯白噪声信道(AWGN)、二进制对称信道(BSC)、二进制输入对称信道(BIAS)等,以及对应的容量公式。 4. 汉明距离和汉明重量:在纠错编码中,这两个概念用于评估两个码字之间的差异,对于理解信道容量至关重要。 5. 道格拉斯-拉普拉斯(Douglas-Rachford)迭代法:在求解信道容量问题时,该算法常被用来寻找信道容量的上下界。 三、信源编码 信源编码是为了减小数据的冗余,提高传输效率。第五章“信源编码-习题答案”可能涉及: 1. 无损编码与有损编码:前者保证解码后的信息与原始信息完全一致,后者则可能丢失部分信息。 2. 霍夫曼编码:一种变长编码,将出现频率高的符号编码为较短的码字,频率低的编码为较长的码字。 3. 游程编码:主要用于图像压缩,统计连续出现的相同像素并记录其数量和值。 4. 波形编码与源预测编码:前者直接编码信号的波形,后者根据信号的统计特性进行预测,然后编码预测误差。 5. 压缩编码标准:如JPEG用于图像,MP3用于音频,这些标准都应用了不同的信源编码技术。 四、信息率失真函数 信息率失真函数描述了在允许一定失真的情况下,最小的信息传输速率。第四章“信息率失真函数-习题答案”会探讨: 1. 定义:R(D)表示在最大失真D下,信源编码的最小信息率。 2. 失真函数D(x,y):衡量原始信息x与重构信息y之间的差异。 3. 欧姆定律与率-失真函数:欧姆定律在信息论中的应用,描述了编码效率与失真的权衡。 4. 奈奎斯特定理在率-失真理论中的应用:在声音和图像压缩中,奈奎斯特定理提供了无失真编码的下限。 5. 最优无记忆源编码:找到满足失真限制的最有效编码方式。 这些习题答案涵盖了信息论与编码的主要知识点,对理解和掌握这门课程具有极大帮助。通过深入学习和练习,可以更好地运用这些理论解决实际问题,如数据压缩、通信系统的优化等。
2025-04-07 17:06:26 332KB 信息论与编码
1
浅谈 38K 红外发射接受编码 1. 红外概念:红外是一种物理存在,不仅仅是一种遥控技术。红外遥控需要红外发光管、接收光线的“接收管”和产生 38K 信号源三部分组成。红外编码 IC 只需要简单的外围电路。 2. 红外接收头:红外接收头分为电平头和脉冲头两种。电平型的红外接收头可以输出连续的低电平信号,而脉冲型的红外接收头只能接收间歇的 38K 信号。 3. 红外遥控中的载波:红外遥控中的载波是 38K 信号,占空比是 1/2,周期是 1/38000 S。红外遥控的载波信号可以是脉冲信号,也可以是电平信号。 4. 38K 红外发射接受编码:38K 红外发射接受编码是使用红外发光管和接收光线的“接收管”来实现的。红外编码 IC 只需要简单的外围电路。 5. 红外 38K 载波信号:红外 38K 载波信号是红外遥控中的载波信号,频率为 38K,占空比为 1/2。红外 38K 载波信号可以是脉冲信号,也可以是电平信号。 6. 三极管驱动:三极管驱动是红外遥控中的一个重要组件,可以作为开关,共射的方式。一般采用 PNP 管作为开关管,NPN 管是利用高电平时候导通。 7. 红外编码信号:红外编码信号是使用 38K 信号来实现的,可以是脉冲信号,也可以是电平信号。红外编码信号可以是红外遥控中的载波信号,也可以是红外接收头中的信号。 8. 红外遥控中的问题:红外遥控中存在一些问题,例如红外接收头的选择、红外编码信号的设计、红外遥控中的载波信号等。 9. 红外遥控的应用:红外遥控有广泛的应用,如电视机、空调、音响等家电设备的遥控,红外数据传输等。 10. 红外遥控的优点:红外遥控有很多优点,如操作简单、距离远、安全性高、成本低等。 11. 红外遥控的缺点:红外遥控也存在一些缺点,如容易受到干扰、距离有限、安全性不高等。 12. 红外遥控的发展:红外遥控技术还在不断发展,新的技术和应用不断涌现,如红外数据传输、红外遥控的安全性等。
2025-04-07 09:27:43 45KB 38K红外解码
1