B.技术疾病预测项目 通过机器学习和Python开发的疾病预测系统最后一年项目 最终疾病预测项目 通过机器学习和Python开发的疾病预测系统最后一年项目 机器学习-机器学习是一种使分析模型构建自动化的数据分析方法。 它是人工智能的一个分支,其基础是系统可以从数据中学习,识别模式并在最少的人工干预下做出决策。 Scikit-learn(Sklearn)是用于Python中机器学习的最有用和最强大的库。 它通过Python中的一致性接口为机器学习和统计建模提供了一系列有效的工具,包括分类,回归,聚类和降维。 该库主要用Python编写,基于NumPy,SciPy和Matplotlib构建。 该系统通过给定的症状预测不同类型的疾病。 数据集包含4000多种疾病。 您可以在大学和工作中使用此项目 你好呀, 如何运行此项目- 现在通过给我发送邮件,以获取项目报告,PPT,项目代码和简介。
2021-11-04 10:57:24 639KB JupyterNotebook
1
使用机器学习进行疾病预测 这个机器学习项目用于根据用户给出的症状来预测疾病。它使用三种不同的机器学习算法进行预测。因此,输出是准确的。它使用tkinter作为GUI。
2021-11-03 20:18:16 31KB Python
1
傅里叶变换三维测量矩阵问题陈述 该项目的目标是实现一种深度学习算法,该算法将单通道手持式ECG设备的心电图(ECG)记录分为四个不同的类别:正常窦性心律(N),房颤(A),其他心律(O ),或者太吵而无法分类(〜)。 该模型是由论文指导的由Zihlmann等人撰写。 在作者对的贡献之后发表的。 心房颤动(AF)是一种常见的心律失常,影响了270万以上的美国人。 这种心律失常与明显的发病率相关,缺血性中风的风险增加了4到5倍。 AF通常是沉默的,患者偶尔会出现中风,这是心律不齐的最初表现。 其他患者有令人不安的症状,例如心pit或头晕,但传统的监测方法无法确定心律不齐。 尽管该问题很重要,但AF检测仍然很困难,因为它可能是偶发性的。 因此,定期采样心率和节律可能有助于在这些情况下进行诊断。 当两个电极中的每一个都握在手中时,移动式ECG设备能够记录单导联等效ECG。 AliveCor为2017年PhysioNet / CinC挑战赛慷慨捐赠了总计12186张ECG录音。 项目包中的文件 该项目包包含以下文件: physionet_readme.ipynb:具有工作代码的此README.m
2021-10-20 20:33:06 957KB 系统开源
1
Logistic回归-心血管疾病 背景 在全球范围内,心血管疾病(CVD)造成的死亡人数多于癌症。 从这项为期15年的心脏研究队列中收集的真实心脏病患者的数据集可用于此任务。 该数据集具有16个患者特征。 请注意,所有功能均不包含任何验血信息。 数据集 数据集可以通过github下载:(“ ”) 代码 Python笔记本:(“ ”) 有关如何启动的说明 I.在google colab上打开python笔记本。 二。 挂载Google云端硬盘:drive.mount(“ / content / drive”) 三, 链接工作目录:census =“ /content/drive/MyDrive/MSBA_Colab_2020/ML_Algorithms/CA05/Data/cvd_data.csv” IV。 运行代码 V.生成最佳模型的准确性和ROC AUC分数 程序 -[A节]
2021-10-18 17:58:07 66KB JupyterNotebook
1
使用CNN进行植物病害检测 通过叶片图像预测植物的健康状况
2021-10-18 14:40:34 210KB
1
植物叶病分析仪 该储存库包括一个预测植物病害的项目,并根据病害向农民推荐农药。 它还包括植物的实时分割以及其中的数据集生成。 因此,它是一个完整的计算机视觉(CV)系统,可以预测植物病害以及植物香料。 涉及的技术栈: 1)Django 2)Tensorflow 3)Keras 4)PIL 在Django依赖项中- 1)Django调整大小2)djagno rest_framework 如果想了解培训代码和方法 参观
2021-10-16 01:22:11 2.46MB HTML
1
Kaggle: 任务是将每个木薯图像分为五类,以指示-具有某种疾病或健康叶片的植物。 组织者介绍了在乌干达定期调查期间收集的21,367张带标签图像的数据集。 大多数图像都是从农民那里获取的,他们在花园里照相,并由国家作物资源研究所(NaCRRI)的专家与坎帕拉的马可雷雷大学的AI实验室合作进行批注。 似乎已经有一些。 实验性 安装此工具 如何使用此基本功能的简单方法: ! pip install https://github.com/Borda/kaggle_cassava-leaf-disease/archive/main.zip 在Colab中运行笔记本 我建议将数据集上传到您的个人gDrive,然后在笔记本电脑中连接gDrive,这样可以在重置Colab时节省重新上传数据集的时间...:] 一些结果 ResNet50的培训进度以及10个时期的培训:
1
Kaggle-木薯叶病分类 Kaggle竞赛代码“木薯叶病分类”。 排名256/3900(最高7%)铜牌 比赛于2月结束,当我最近整理代码时,我决定在GitHub上发布它(整理代码确实是一件很累的工作〜)。 我在私有数据集中得到0.8987 。 但是,这不是我最好的解决方案(确定是成功的关键...大声笑)。 我在Github上发布的代码为0.9010 ,如果我提交此解决方案,则该代码应排在银牌区域。 此仓库包含培训部分和测试部分的代码,我使用一些技巧,如下所示: AMP,用于更快的训练(Kaggle中的GPU时间限制,我的GPU不好) 数据8月可提供更好的性能(我放弃了cutmix或snapmix之类的技巧,这些技巧浪费大量时间并且没有改善性能) K折模型合奏:$ k = 5 $ 模型集合:EfficientB4(由我自己训练)+ Resnext(在讨论区域中开放访问) 测
2021-10-11 20:30:52 351KB JupyterNotebook
1
该数据库包含76个属性,但是所有已发布的实验都引用了其中14个属性的子集。特别是,克利夫兰数据库是 迄今为止ML研究人员使用的唯一数据库。“目标”字段是指患者中心脏病的存在。 heart.csv
2021-10-08 11:13:05 3KB 数据集
1
在医学界,决策是根据存储的数据和医生的经验来做出的。 可能会出现错误的机会,诊断时间更长,治疗重要器官心脏的费用增加。 医院中当前的数据库系统包含大量数据,可用于预测心脏的健康状况。 可以将这些数据转换成有用的信息,这些信息可以用于制作可以预测疾病发生机会的智能决策系统。 该系统提供了预测个体中心脏病发生的能力。 它使用卷积神经网络进行预测。 利用年龄,性别,胆固醇,心电图斜率等重要因素,可以预测人患心脏病的可能性。 这些属性不过是患者的临床数据。
2021-09-30 11:29:27 278KB heart disease heart health
1