只为小站
首页
域名查询
文件下载
登录
Mean-shift MATLAB代码
Mean-shift MATLAB code.简单易用。当前比较流行的聚类方法 Mean-shift MATLAB code.简单易用。当前比较流行的聚类方法
2022-03-28 17:28:33
3KB
Mean-shift
Clustering
1
Gauss-curvature and mean-curvature.rar
通过一个实际案例,用MATLAB来求曲面的高斯曲率和平均曲率。 里面有实际的案例,通过一个曲面的色图形象展现曲面高斯曲率和平均曲率的分布。
2022-03-23 15:55:08
1KB
mean
curvature
Gauss
curvature
1
mean shift 彩色图像分割代码
mean shift 图像分割的一个简单matlab代码
2022-03-20 15:25:28
194KB
mean
shift
图像分割
1
Fast Non-Local Mean Image Denoising Implementation:这个单一的m文件实现了非局部平均图像去噪的快速算法。-matlab开发
快速 NLM 方法基于积分图像,并在 Darbon 的论文中进行了描述。 一般来说,这种快速实现比经典的 NLM 方法快 10 倍以上。
2022-03-15 13:53:48
3KB
matlab
1
移动 RMS 计算:mean-RMS mfile 就像 Simulink 模块一样-matlab开发
使用此文件计算预定时间段内矢量输入信号的 RMS 平均值。 此 mfile 将执行与 simulink 中的均值 RMS 模块相同的计算。
2022-02-28 21:23:49
2KB
matlab
1
Mean-Shift跟踪算法中核函数窗宽的自动选取
本论文介绍了:Mean-Shift跟踪算法中核函数窗宽的自动选取,比较实用。
2022-02-22 23:11:32
918KB
Mean-Shift
tracking
核函数
1
ISO TS 21357-2022 Evaluation of the mean size of nano-objects
ISO TS 21357-2022 Nanotechnologies - Evaluation of the mean size of nano-objects in liquid dispersions by static multiple light.pdf
2022-02-17 14:03:42
3.98MB
ISO
TS
21357
2022
改进的自适应LMS算法
LMS(Least Mean Square)算法因其结构简单、稳定性好等优点,得到了广泛的应用,但在收敛速度和稳态失调之间存在着固有矛盾,通过对步长因子的调整可以克服这一矛盾。分析研究了已有的变步长LMS算法,在此基础上提出了一种改进的变步长LMS算法。理论分析和计算机仿真表明该算法不但具有较快的收敛速率,并且具有更小的稳态误差。
2022-02-11 20:49:02
427KB
变步长;最小均方误差(LMS)算法;收敛速率;稳态误差
variable
step-size;Least
Mean
1
Scala语言实现Kmeans聚类算法(含有数据)
利用scala实现的
k-mean
s 包含数据集 0 1 22 9 181 5450 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 8 8 0.00 0.00 0.00 0.00 1.00 0.00 0.00 9 9 1.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0 1 22 9 239 486 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 8 8 0.00 0.00 0.00 0.00 1.00 0.00 0.00 19 19 1.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0 1 22 9 235 1337 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 8 8 0.00 0.00 0.00 0.00 1.00 0.00 0.00 29 29 1.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0 1 22 9 219 1337 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 6 6 0.00 0.00 0.00 0.00 1.00 0.00 0.00 39 39 1.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0 1 22 9 217 2032 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 6 6 0.00 0.00 0.00 0.00 1.00 0.00 0.00 49 49 1.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0 1 22 9 217 2032 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 6 6 0.00 0.00 0.00 0.00 1.00 0.00 0.00 59 59 1.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0 1 22 9 212 1940 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 2 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1 69 1.00 0.00 1.00 0.04 0.00 0.00 0.00 0.00 0 1 22 9 159 4087 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 5 5 0.00 0.00 0.00 0.00 1.00 0.00 0.00 11 79 1.00 0.00 0.09 0.04 0.00 0.00 0.00 0.00 0 1 22 9 210 151 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 8 8 0.00 0.00 0.00 0.00 1.00 0.00 0.00 8 89 1.00 0.00 0.12 0.04 0.00 0.00 0.00 0.00 0 1 22 9 212 786 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 8 8 0.00 0.00 0.00 0.00 1.00 0.00 0.00 8 99 1.00 0.00 0.12 0.05 0.00 0.00 0.00 0.00 0 1 22 9 210 624 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 18 18 0.00 0.00 0.00 0.00 1.00 0.00 0.00 18 109 1.00 0.00 0.06 0.05 0.00 0.00 0.00 0.00 0 1 22 9 177 1985 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0.00 0.00 0.00 0.00 1.00 0.00 0.00 28 119 1.00 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0 1 22 9 222 773 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 11 11 0.00 0.00 0.00 0.00 1.00 0.00 0.00 38 129 1.00 0.00 0.03 0.04 0.00 0.00 0.00 0.00 0 1 22 9 256 1169 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4 4 0.00 0.00 0.00 0.00 1.00 0.00 0.00 4 139 1.00 0.00 0.25 0.04 0.00 0.00 0.00 0.00 0 1 22 9 241 259 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0.00 0.00 0.00 0.00 1.00 0.00 0.00 14 149 1.00 0.00 0.07 0.04 0.00 0.00 0.00 0.00 0 1 22 9 260 1837 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 11 11 0.00 0.00 0.00 0.00 1.00 0.00 0.00 24 159 1.00 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0 1 22 9 241 261 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 2 0.00 0.00 0.00 0.00 1.00 0.00 0.00 34 169 1.00 0.00 0.03 0.04 0.00 0.00 0.00 0.00 0 1 22 9 257 818 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 12 12 0.00 0.00 0.00 0.00 1.00 0.00 0.00 44 179 1.00 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0 1 22 9 233 255 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 8 0.00 0.00 0.00 0.00 1.00 0.00 0.25 54 189 1.00 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0 1 22 9 233 504 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 7 7 0.00 0.00 0.00 0.00 1.00 0.00 0.00 64 199 1.00 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0 1 22 9 256 1273 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 17 17 0.00 0.00 0.00 0.00 1.00 0.00 0.00 74 209 1.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0 1 22 9 234 255 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 5 5 0.00 0.00 0.00 0.00 1.00 0.00 0.00 84 219 1.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0 1 22 9 241 259 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 12 12 0.00 0.00 0.00 0.00 1.00 0.00 0.00 94 229 1.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0 1 22 9 239 968 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 3 239 1.00 0.00 0.33 0.03 0.00 0.00 0.00 0.00 0 1 22 9 245 1919 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 13 13 0.00 0.00 0.00 0.00 1.00 0.00 0.00 13 249 1.00 0.00 0.08 0.03 0.00 0.00 0.00 0.00 0 1 22 9 248 2129 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 23 23 0.00 0.00 0.00 0.00 1.00 0.00 0.00 23 255 1.00 0.00 0.04 0.03 0.00 0.00 0.00 0.00 0 1 22 9 354 1752 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 2 0.00 0.00 0.00 0.00 1.00 0.00 0.00 5 255 1.00 0.00 0.20 0.04 0.00 0.00 0.00 0.00 0 1 22 9 193 3991 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1 255 1.00 0.00 1.00 0.05 0.00 0.00 0.00 0.00 0 1 22 9 214 14959 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 6 6 0.00 0.00 0.00 0.00 1.00 0.00 0.00 11 255 1.00 0.00 0.09 0.05 0.00 0.00 0.00 0.00 0 1 22 9 212 1309 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 10 0.00 0.00 0.00 0.00 1.00 0.00 0.20 21 255 1.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0 1 22 9 215 3670 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 31 255 1.00 0.00 0.03 0.05 0.00 0.00 0.00 0.00 0 1 22 9 217 18434 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 2 0.00 0.00 0.00 0.00 1.00 0.00 0.00 41 255 1.00 0.00 0.02 0.05 0.00 0.00 0.00 0.00 0 1 22 9 205 424 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 25 0.00 0.00 0.00 0.00 1.00 0.00 0.12 2 255 1.00 0.00 0.50 0.05 0.00 0.00 0.00 0.00 0 1 22 9 155 424 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 13 0.00 0.00 0.00 0.00 1.00 0.00 0.15 12 255 1.00 0.00 0.08 0.05 0.00 0.00 0.00 0.00 0 1 22 9 202 424 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 22 255 1.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0 1 22 9 235 6627 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0.00 0.00 0.00 0.00 1.00 0.00 0.00 32 255 1.00 0.00 0.03 0.05 0.00 0.00 0.00 0.00 0 1 22 9 259 3917 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0.00 0.00 0.00 0.00 1.00 0.00 0.00 42 255 1.00 0.00 0.02 0.05 0.00 0.00 0.00 0.00 0 1 22 9 301 2653 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 2 0.00 0.00 0.00 0.00 1.00 0.00 0.00 52 255 1.00 0.00 0.02 0.05 0.00 0.00 0.00 0.00 0 1 22 9 322 424 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 2 0.00 0.00 0.00 0.00 1.00 0.00 0.00 62 255 1.00 0.00 0.02 0.05 0.00 0.00 0.00 0.00 0 1 22 9 370 520 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 72 255 1.00 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0 1 22 9 370 520 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 82 255 1.00 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0 1 22 9 172 5884 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 6 6 0.00 0.00 0.00 0.00 1.00 0.00 0.00 10 255 1.00 0.00 0.10 0.05 0.00 0.00 0.00 0.00 0 1 22 9 264 16123 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 13 0.00 0.00 0.00 0.00 1.00 0.00 0.23 20 255 1.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0 1 22 9 255 1948 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4 14 0.00 0.00 0.00 0.00 1.00 0.00 0.14 30 255 1.00 0.00 0.03 0.05 0.00 0.00 0.00 0.00 0 1 22 9 274 19790 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 6 6 0.00 0.00 0.00 0.00 1.00 0.00 0.00 40 255 1.00 0.00 0.03 0.05 0.00 0.00 0.00 0.00 0 1 22 9 313 293 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 3 255 1.00 0.00 0.33 0.05 0.00 0.00 0.00 0.00 0 1 22 9 145 4466 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4 4 0.00 0.00 0.00 0.00 1.00 0.00 0.00 13 255 1.00 0.00 0.08 0.05 0.00 0.00 0.00 0.00 0 1 22 9 290 460 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0.00 0.00 0.00 0.00 1.00 0.00 0.00 23 255 1.00 0.00 0.04 0.05 0.00 0.00 0.00 0.00 0 1 22 9 309 17798 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 2 0.00 0.00 0.00 0.00 1.00 0.00 0.00 2 255 1.00 0.00 0.50 0.06 0.00 0.00 0.00 0.00 0 1 22 9 317 2075 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4 4 0.00 0.00 0.00 0.00 1.00 0.00 0.00 8 255 1.00 0.00 0.12 0.06 0.00 0.00 0.00 0.00
2022-01-05 23:29:25
32KB
scala-k-mean
1
基于Mean-shift的图像分割
该代码实现了基于Mean-shift的图像分割功能,具有很好的效果。
2022-01-05 11:38:57
4.23MB
图像分割
1
个人信息
点我去登录
购买积分
下载历史
恢复订单
热门下载
PLECS中文手册.pdf
mingw-w64-install.exe
avantage 软件 xps 处理软件30天后不能使用问题
android studio课程设计作业PPT+设计文档+可运行源代码+设计思路
中小型企业网络建设.pkt
Academic+Phrasebank+2021+Edition+_中英文对照.pdf
Python+OpenCV实现行人检测(含配置说明)
股票价格预测-LSTM-TCN-GBDT:使用四种算法(LSTM,TCN,GRU,GBDT)进行股票价格的预测和预测结果的检验。有四种算法(LSTM,TCN,GRU,GBDT)用于预测股价并检验预测结果-源码
麻雀搜索算法(SSA)优化bp网络
2020年数学建模国赛C题论文
风电场风速及功率数据.zip
Monet智能交通场景应用
基于VMD算法的信号降噪.rar
基于傅里叶算子的手势识别的完整源代码(Python实现,包含样本库)
Spring相关的外文文献和翻译(毕设论文必备)
最新下载
车牌识别视频
ResNet-50(Version2)-数据集
金博ICUSB写锁程序.rar
gbk+unicode+汉字编码对照表
冒险岛079服务端一线海源码更新版
OLM Smoother_AE动画插件
Tailscale最新安装包(1.60.1)
最新联通移动电信路由表
介电说明书
久其通用数据管理平台(定义版)2.8带注册
其他资源
全国2014-2018年空气质量csv数据集文件数据.csv
电信中兴光猫超密获取工具使用方法及软件ZX-PassReader.zip
基于Qt和opencv的身份证号码识别系统
retinex matlab实现(带测试图)
重庆邮电大学《数据结构2015 》历年期末考试试卷(含答案).pdf
《网易云音乐》需求文档.docx
国南网报文解析V7.9.26(电力行业国网698.45报文解析,南网报文解析,698模拟主站)
尚硅谷_宋红康_JavaSE课件
2019美赛ICM/MCM题目(逐段显示,中英对照版)
STM32F103C8T6核心板测试程序(RTC).rar
小区物业管理系统 (含 数据库)
云大软院软件测试所有实验
pyv8-win64(p3版本).7z
1615024XX hy.zip
php中文离线手册chm 附函数手册
RG-AP220-SE系列无线接入点安装手册(V1.01).pdf
初中文言文原文汇总.docx
Cadence ALTIUM 3D元件库 step后缀3D封装三维PCB封装库文件500MB.zip
NativeScript Book
coupons-ss-dev.zip
软件开发文档模板(最全)
信息安全等级保护标准(全)
opengl实现的光线跟踪
电子罗盘mag3110测试校准程序
基于MATLAB/Simulink的光伏电池建模与仿真