大数据分析的案例、方法与挑战
2022-05-20 19:06:44 4.04MB 数据分析 文档资料 数据挖掘
大数据分析的案例方法与挑战
2022-05-20 19:06:43 4.04MB 数据分析 文档资料 数据挖掘
《数据挖掘导论》(英文版)对数据挖掘进行了全面介绍,旨在为读者提供将数据挖掘应用于实际问题所必需的知识。《数据挖掘导论》(英文版)涵盖五个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都有两章:前面一章讲述基本概念、代表性算法和评估技术,而后面一章较深入地讨论高级概念和算法。目的是在使读者透彻地理解数据挖掘基础的同时,还能了解更多重要的高级主题。此外,书中还提供了大量例子、图表和习题。
2022-05-20 11:46:24 49.3MB 数据挖掘导论 中文版
1
SOM神经网络 SOM神经网络是一种基于模型的聚类方法。SOM神经网络由输入层和竞争层组成。 输入层由N个输入神经元组成,竞争层由mm = M个输出神经元组成,且形成一个二维平面阵列。 输入层各神经元与竞争层各神经元之间实现全互连接。 该网络根据其学习规则,通过对输入模式的反复学习,捕捉住各个输入模式中所含的模式特征,并对其进行自组织,在竞争层将聚类结果表现出来,进行自动聚类。竞争层的任何一个神经元都可以代表聚类结果。
2022-05-20 07:57:37 598KB 聚类 数据挖掘 伪代码 例子
1
多模态数据分析视阈下深度学习评价路径与策略
2022-05-19 22:06:51 2.27MB 数据分析 深度学习 文档资料 数据挖掘
头歌模式识别第二次实验 第1关:朴素贝叶斯分类算法流程
2022-05-19 19:07:07 22KB 分类 数据挖掘 人工智能 机器学习
新闻数据集文本分类实战
2022-05-19 15:30:16 29.27MB 分类 数据挖掘 人工智能 机器学习
1
本文从实战的角度出发,带领大家感受一下MixNet,我们还是使用以前的植物分类数据集,模型采用mixnet_m。 通过本文你可以学习到: 1、如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段? 2、如何调用自定义的模型? 3、如何使用混合精度训练? 4、如何使用梯度裁剪防止梯度爆炸? 5、如何使用DP多显卡训练? 6、如何绘制loss和acc曲线? 7、如何生成val的测评报告? 8、如何编写测试脚本测试测试集? 9、如何使用余弦退火策略调整学习率? 原文链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/124845052
2022-05-19 12:05:33 996.96MB 分类 数据挖掘 人工智能 机器学习
在智能手机上使用递归神经网络(RNN),LSTM和Tensorflow进行人类活动识别 这是我硕士课程的项目,其中涉及使用无线传感器数据挖掘实验室(WISDM)的数据集为端到端系统构建机器学习模型,以使用智能手机加速度计,Tensorflow框架,递归神经网络预测人类的基本活动网络和多个长期短期存储单元(LSTM)堆栈,用于构建具有隐藏单元的深度网络。 训练模型后,将其保存并导出到android应用程序,并使用模型作为概念验证和UI界面进行预测,以使用文本语音API讲出结果。 处理: 清理并合并数据 根据模型要求,通过将每个序列活动的固定长度序列(200个)作为训练数据来进行数据预处理,以最大程度地提高模型的效率。 将数据分为训练(80%)和测试(20%)集。 通过堆叠带有2个完全连接的RNN的多层LSTM内存单元(这将解决消失的梯度问题)来构建一个深层网络。 使用Tensorflow框架构建整个模型,并创建占位符以供模型在端到端系统中访问。 创建最小化损失的损失函数,我们使用最小二乘误差(LSE)或L2范数,因为它将通过一个解决方案提供稳定的解决方案。 在整个训练期间,
1
svm练习的几个例子 数据挖掘中新方法svm
2022-05-19 11:31:33 28KB svm练习的几个例子
1