文中提出了一种肝脏在CT(Computed Tomography)图像中的半监督自动分割方法。该方法采用深度协同训练模型以解决医学图像领域中有标签数据获取困难且成本高的问题。首先利用有标签数据建立U-Net和2D V-Net两种分割网络,并分别对无标签数据进行分割,然后对分割结果进行粗略挑选,再进行精细挑选,最后将置信度较高的伪标签加入到训练集中,重复此过程直到对验证集分割结果的Dice值不再增大时为止。提出的方法可以减少迭代过程中累积的误差,在2017 Liver Tumor Segmentation(LiTS)数据集上的结果表明,该方法与全监督学习相比可以有效提高分割精度。
1
这些年在计算机视觉领域中的自监督学习- 计算机视觉.pdf
2022-04-21 19:10:36 2.94MB 计算机视觉 学习 人工智能
人工智能11监督学习
2022-04-15 18:13:04 3.36MB 人工智能 学习 数据仓库
从监督学习到强化学习-四种深度学习方式原理知多少 深度学习原理.doc
2022-04-15 13:17:32 20KB 学习 深度学习 人工智能
机器学习实战项目——无监督聚类&PCA tSNE降维.zip
2022-04-12 09:07:52 1.32MB 机器学习 无监督学习 聚类算法 PCA降维
弱监督学习的精确3D人脸重建:从单个图像到图像集 回购协议Pytorch版本。 此存储库仅包含重建部分,因此您可以使用库来训练网络。 而预训练模式也从这个。 特征 神经网络 我使用mtcnn裁剪原始图像并检测5个地标。 的大多数代码来自 。 pytorc3d 在此,我使用渲染重建的图像。 估计内在参数 在原点回购( ),则渲染的图像是不一样的,因为输入图像preprocess 。 因此,我添加了estimate_intrinsic以获取内部参数。 例子: 这里有些例子: 原始图片 裁剪图像 渲染图像 文件架构 ├─BFM same as Deep3DFaceReconstruction ├─dataset storing the corpped images │ └─Vladimir_Putin ├─examples
2022-04-08 15:20:03 134KB Python
1
对于学习机器学习算法中的半监督学习算法有一定的帮助。
2022-04-08 10:04:33 2.91MB 半监督学习
1
957 无监督学习通往人工智能重要的一环:无监督学习.docx
2022-04-06 00:52:37 1.09MB 技术
结合学习视频各个要点进行的记录
2022-03-31 23:13:18 1.42MB rabbitmq 面试 强化学习 监督学习
1
琥珀酰化是蛋白质翻译后修饰(PTM)的一种广泛类型,在调节蛋白质构象,功能和理化性质方面起着重要作用。 与劳动密集和费时的实验方法相比,琥珀酰化位点的计算预测由于其方便快捷的速度而非常可取。 当前,已经开发了许多计算模型以通过各种类型的两类机器学习算法来识别PTM站点。 这些方法需要正样本和负样本进行训练。 但是,很难指定PTM的负样本,如果不能正确完成,会极大地影响计算模型的性能。 因此,在这项工作中,我们将正样本仅学习(PSoL)算法首次应用于琥珀酰化位点预测问题,这是一类特殊的半监督机器学习,它使用正样本和未标记样本来训练模型。 同时,我们通过使用多种特征编码方案,提出了一种新颖的琥珀酰位点计算预测子,称为SucPred(琥珀酰位点预测子)。 通过使用SucPred预测变量,在训练数据集上进行5倍交叉验证并在独立测试数据集上进行了5倍交叉验证,其准确性为88.65%,这表明此处介绍的仅用于学习算法的阳性样本特别有用用于鉴定蛋白质琥珀酰化位点。 此外,仅用于正样本的学习算法可以轻松地为其他类型的PTM网站建立预测器。 开发了用于预测琥珀酰化位点的Web服务器,该服务器可从http:
2022-03-29 21:37:59 514KB Succinylated proteins; Positive samples
1