自适应粒子群优化是一种优化算法,它是粒子群优化(Particle Swarm Optimization,PSO)的一种变体。与传统的PSO不同,APSO使用自适应策略来调整算法的参数,以提高算法的性能和收敛速度。 APSO的主要思想是根据群体的收敛情况动态调整算法的参数。APSO的核心算法与PSO类似,由粒子的速度和位置更新规则组成。每个粒子通过与局部最优解和全局最优解比较来更新自己的位置和速度。 APSO的另一个关键之处是学习因子的自适应调整。在每个迭代中,APSO会计算每个粒子的适应度值。如果适应度值的方差较小,则学习因子的值会变小,以便更加收敛到最优解。相反,如果适应度值的方差较大,则学习因子的值会变大,以便更好地探索解空间。
2023-02-27 15:51:35 3KB pso 算法优化
1
针对煤矿回采工作面瓦斯涌出的非线性特征,提出一种基于改进量子粒子群优化BP神经网络(IQPSO-BP)的瓦斯涌出量预测方法。鉴于量子粒子群算法的遍历能力有限,采用混沌序列来初始化量子的初始角位置。同时,采用凸函数调整惯性权重,以平衡算法的全局勘探和局部开发能力。并依此来优化BP神经网络的权值、阈值参数,进而建立了瓦斯涌出量预测模型。试验结果表明,IQPSO-BP算法具有较强的泛化能力及较高的预测精度,可有效用于煤矿瓦斯涌出量的预测。
1
基于蚁群优化的改进决策树算法研究,张忠坤,周亚建,本文提出了一种新的基于蚁群优化的改进决策树算法(ACODT, Ant Colony Optimization Decision Tree),该算法充分利用了蚁群算法的信息素反馈和启��
2023-02-19 22:15:09 413KB 决策树
1
为有效避免粒子群优化算法后期收敛速度慢的问题,提高寻优能力,设计了一种以自适应方式更新粒子飞行速度的弹性粒子群优化算法,建立了水电优化调度数学模型,提出了弹性粒子群优化算法解决水电优化调度问题的实现方法,包括粒子编码设计、适应度函数设计以及弹性修正值设计,并编制了基于Matlab语言的优化程序.实例仿真结果表明:弹性粒子群优化算法是有效的;相比基本粒子群优化算法和自适应粒子群优化算法,弹性粒子群优化算法求解水电优化调度问题具有更强的全局寻优能力和更快的收敛速度.
2023-02-18 10:04:11 348KB 工程技术 论文
1
擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真。
2023-02-05 22:27:07 700KB matlab
1
其中关于PSO部分的书写,已经进行了封装,可以进行通用,用于其他模型的优化。该资源实例主要用于优化支持向量机回归算法中的惩罚参数C、损失函数epsilon、核系数gamma进行调参
1
建立了双端基于电压源型换流器的高压直流输电(VSC-HVDC)系统的小信号模型;利用特征根分析法,基于线性化状态空间模型,将与系统特征根直接相关的振荡模式和衰减模式的罚函数作为目标函数;提出了基于粒子群优化算法的VSC-HVDC系统的控制参数优化策略,对整个系统的控制参数同时进行整体优化。仿真结果验证了小信号模型的正确性;优化后的系统在小扰动、大扰动、潮流反转及故障情况下均具有较高的控制精度,整个系统的稳态与暂态特性均得到较大改善。
1
对象为风电接入的IEEE33节点配电系统,已知风电分别接入在10节点(pw1)和17节点(pw2),采用粒子群优化算法求解无功补偿装置的最优补偿无功功率,使得系统的网损最小,潮流计算通过调用Matpower工具箱进行计算。 目标函数:确定无功补偿装置接入系统的最优无功补偿注入功率使得系统的运行网损最小(程序中的注释有详细的说明)约束:无功出力上下限,关于粒子群迭代过程中,粒子位置越限处理注释中有说明。 附基本优化模型word格式。
2022-12-27 10:49:20 37KB Matpower 粒子群优化 风电并网 Matlab
粒子群优化算法优化支持向量机
2022-12-23 12:25:31 50KB matlab
1
粒子群的定义、发展以及其应用,详细描述了粒子群算法的流程对初学者是一个极好的资料
2022-12-22 19:06:46 883KB 粒子群算法 鸟群 优化算法
1