无线充电系统中LCC-S谐振闭环控制的Simulink仿真研究与实践,LCC-S无线充电恒流恒压闭环控制仿真 Simulink仿真模型,LCC-S谐振补偿拓扑,副边buck电路闭环控制 1. 输入直流电压400V,负载为切电阻,分别为20-30-40Ω,最大功率2kW。 2. 闭环PI控制:设定值与反馈值的差通过PI环节,与三角载波比较,大于时控制MOSFET导通,小于时关断,开关频率100kHz。 3. 设置恒压值200V,恒流值5A。 ,LCC-S无线充电; 恒流恒压闭环控制; Simulink仿真模型; 谐振补偿拓扑; 副边buck电路; 开关频率; 功率。,基于LCC-S无线充电的闭环控制恒流恒压Simulink仿真模型研究
2025-05-26 08:31:43 218KB 数据仓库
1
内容概要:本文详细介绍了永磁同步电机(PMSM)在运行过程中产生的电流谐波问题及其解决方案。首先分析了PMSM产生谐波的原因,特别是5次和7次电流谐波的影响。接着,利用Simulink建立了PMSM的仿真模型,重点研究了逆变器非线性对电流谐波的影响。文中提出了谐波注入补偿方法,并通过特定频率的谐波电压注入来补偿电流谐波。此外,还介绍了一种基于空间矢量脉宽调制(SVPWM)的5次、7次电流谐波抑制策略。通过仿真结果表明,该方法能有效减少电流谐波含量,提升电机性能和电网质量。 适合人群:从事电力电子系统研究的技术人员、高校师生以及对永磁同步电机谐波抑制感兴趣的科研工作者。 使用场景及目标:适用于需要理解和解决永磁同步电机电流谐波问题的研究项目和技术开发。目标是通过仿真验证谐波抑制方法的有效性,进而优化电机性能和电网质量。 其他说明:文章提供了详细的仿真步骤和结果分析,有助于读者深入了解谐波抑制的具体实施过程。同时,附带的相关参考文献也为进一步研究提供了理论支持。
2025-05-20 16:36:13 584KB 电力电子 Simulink SVPWM PMSM
1
"LCC-LCC无线电能传输系统:WPT Simulink仿真模型与高效补偿拓扑设计",LCC-LCC无线电能传输(WPT),无线充电,Simulink仿真模型,LCC-LCC补偿拓扑(其他补偿拓扑可定制,附参考lunwen) 电路参数: 直流电压220V,谐振频率85kHz,耦合系数0.3,负载40Ω,输出功率5kW(附带第二个模型60W),效率为92.64% (修改元件寄生电阻可以提高效率) ,LCC-LCC无线电能传输;无线充电;Simulink仿真模型;LCC-LCC补偿拓扑;定制补偿拓扑;直流电压;谐振频率;耦合系数;负载;输出功率;效率。,"LCC-LCC无线充电系统:仿真与效率优化"
2025-05-20 15:11:26 481KB 数据仓库
1
三相静止无功发生器SVG仿真设计:原理、控制策略与无功补偿的全面解析,三相静止无功发生器SVG仿真设计:原理、控制策略与无功补偿的全面解析,三相静止无功发生器SVG仿真设计 【含说明报告】 [1]附带资料:一份与仿真完全对应的31页Word报告可结合仿真快速入门学习SVG。 原理说明及仿真详细说明和结果分析(详细看展示的报告内容) [2]控制策略:采用电压定向的双闭环控制策略,直流电压外环电流内环控制,调制分别采用正弦脉宽调制SPWM与SVPWM调制的静止无功发生器对比SVG交流侧输出电流的谐波含量. [3]无功补偿:通过调节SVG交流侧输出电压和电流相关参数的大小,这样就可以控制SVG交流输出的无功电流的大小,以此达到了对电网动态无功补偿的目的。 需要资料可以直接,一直都有资料~ 的展示图与资料一致对应 ,三相静止无功发生器SVG仿真设计;控制策略;无功补偿;电压定向的双闭环控制;SVPWM调制;谐波含量分析。,三相静止无功发生器SVG仿真设计与控制策略研究
2025-05-20 13:36:02 783KB
1
逆合成孔径雷达相位补偿技术:NMEA、FPMEA与SUMEA算法解析,逆合成孔径雷达相位补偿,牛顿法最小熵相位补偿(NMEA)、固定点最小熵相位补偿(FPMEA)、同时更新相位补偿(SUMEA) ,逆合成孔径雷达相位补偿; 牛顿法最小熵相位补偿(NMEA); 固定点最小熵相位补偿(FPMEA); 同时更新相位补偿(SUMEA),逆合成雷达相位补偿技术:NMEA、FPMEA与SUMEA比较研究 逆合成孔径雷达(ISAR)是一种高分辨率雷达,广泛应用于目标检测和跟踪。逆合成孔径雷达的相位补偿技术是实现高分辨率成像的关键。该技术能够校正雷达回波信号中由于平台运动或环境变化等因素导致的相位误差,从而提高雷达图像质量。 逆合成孔径雷达相位补偿技术包括多种算法,其中牛顿法最小熵相位补偿(NMEA)、固定点最小熵相位补偿(FPMEA)和同时更新相位补偿(SUMEA)是最为重要的三种算法。这些算法在处理ISAR信号时各有优势,适用的场景也有所不同。 牛顿法最小熵相位补偿(NMEA)算法基于牛顿迭代法,通过迭代过程快速接近最优解。该算法的优点在于收敛速度快,尤其适合于处理那些相位误差较大的情况。NMEA算法的核心在于如何构建和迭代最小化熵的目标函数,这使得它在处理非线性问题时表现出色。 固定点最小熵相位补偿(FPMEA)算法则是以预先设定的固定点作为参考,通过最小化熵函数来获得最优的相位补偿量。FPMEA在算法实现上更为简洁,易于理解和编程。该算法适用于那些相位误差相对稳定,不需要频繁调整固定点的情况。 同时更新相位补偿(SUMEA)算法顾名思义,能够同时对相位误差进行更新补偿。SUMEA算法在每次迭代过程中会同时考虑所有已知的相位误差,因此在多个误差源并存时表现尤为突出。该算法的效率与误差更新的策略密切相关,需要仔细设计迭代过程以避免收敛速度过慢的问题。 逆合成孔径雷达相位补偿技术的研究对于雷达技术领域具有重要意义。随着雷达技术的不断发展,ISAR成像技术在军事和民用领域都有着广泛的应用前景。通过不断优化相位补偿技术,可以有效提高ISAR系统的成像性能,满足日益增长的精确度要求。 逆合成孔径雷达相位补偿技术及其优化的研究文献和资料,涵盖了从基础理论到实际应用的多个层面。这些研究有助于工程师和科研人员深入理解ISAR系统的工作原理,推动了相关技术的进步。例如,文献《逆合成孔径雷达相位补偿技术及其优化》和《关于逆合成孔径雷达相位补偿算法的研究》就提供了深入的技术分析和算法实现细节。 逆合成孔径雷达相位补偿技术的不断改进和优化,对于提高雷达系统的性能具有极其重要的意义。通过应用NMEA、FPMEA和SUMEA等算法,可以显著提升雷达图像的分辨率和准确性,进一步拓展逆合成孔径雷达的应用范围。
2025-05-17 09:59:09 4MB istio
1
应用新的温度补偿方法研制了100. 450 MHz五次泛音温度补偿晶体振荡器,该振荡器由450 kHz陶瓷振荡器,100 MHz五次泛音晶体振荡器,混频器,晶体滤波器组成。450 kHz陶瓷振荡器的输出频率与100 MHz晶体振荡器的输出频率混频,滤波,取其和频。直接利用450 kHz陶瓷振荡器输出频率对100 MHz晶体振荡器进行温度补偿。实验结果表明,在。 -700C该振荡器的频率-温度稳定度<17X 10-,初步测量相位噪声为一119 dBc)1 kHz.
2025-05-15 23:20:39 166KB 工程技术 论文
1
内容概要:本文详细介绍了基于STM32F4和AD7124的高精度温度测量方案,涵盖硬件设计和软件实现两方面。硬件部分重点讲解了AD7124作为24位ADC的应用,包括其与STM32的连接方式、热电偶信号接入方法以及独特的三线制Pt100冷端补偿电路设计。软件部分展示了AD7124的初始化配置、滤波器设置、热电偶信号处理(如多项式拟合)、冷端补偿算法(如查表法+线性插值)等关键技术细节。此外,还讨论了一些常见的注意事项,如基准电压稳定性、电磁干扰防护措施等。 适合人群:从事嵌入式系统开发的技术人员,尤其是对工业自动化、精密仪器制造等领域感兴趣的工程师。 使用场景及目标:适用于需要精确测量温度变化的工业应用场景,如化工生产监控、冶金加工过程控制等。主要目标是提供一套完整的解决方案,帮助开发者理解和应用先进的温度传感技术,提高系统的可靠性和准确性。 其他说明:文中提供了丰富的代码片段和原理图,便于读者深入理解并进行实际操作。同时强调了多个实用技巧,如双恒流源比例法消除导线电阻误差、SINC4滤波器的选择等,有助于解决实际工程项目中遇到的具体问题。
2025-05-14 17:14:41 3.23MB
1
“基于AD7124的Pt100冷端补偿及热电偶测温方案,涵盖原理图和STM32源码移植”,热电偶测温方案解析:AD7124驱动源码支持多种类型热电偶及Pt100冷端补偿与工程原理图详解。,热电偶测温方案 AD7124+Pt100冷端补偿 包含Pt100、NTC热敏、热电偶处理驱动源码 支持热电偶类型T、J、E、N、K、B、R、S 8种类型 Pt100测温方案 三线制 四线制 三线制双恒流源比例法,消除导线电阻误差 包含原理图和STM32+AD7124+热电偶方案+Pt100冷端补偿解析工程源码 如果用于别的MCU可以参考此代码移植 资料很全 ,Pt100测温方案;AD7124;冷端补偿;热电偶处理驱动源码;导线电阻误差消除;T/J/E/N/K/B/R/S类型热电偶支持。,热电偶与Pt100测温方案:多类型支持与冷端补偿解析工程源码
2025-05-14 17:01:20 4.16MB 柔性数组
1
利用Radon—Wigner变换与Wigner—Hough估计进行线性调频信号参数的信号参数估计与雷达信号处理中的速度补偿.pdf
2025-05-10 16:09:41 54KB
1
内容概要:本文详细介绍了如何在SMIC 180nm工艺下设计一个带隙基准电路,并加入二阶温度补偿以提高电压稳定性。首先阐述了带隙基准电路的基本原理,即利用双极型晶体管的基极-发射极电压(Vbe)和热电压(Vt)的不同温度系数特性,通过适当的电阻比例叠加,生成一个与温度无关的稳定电压。接着,设计了启动电路以确保电路正常启动,并给出了具体的Verilog代码实现。随后,深入探讨了二阶温度补偿的方法,通过引入额外的电路来补偿高阶温度项,从而进一步减少电压漂移。最后,进行了多种仿真实验,包括稳定性分析、直流分析和瞬态分析,验证了电路的功能和性能。 适合人群:从事模拟集成电路设计的研究人员和技术人员,尤其是对带隙基准电路和温度补偿感兴趣的工程师。 使用场景及目标:适用于需要精确电压基准的应用场合,如精密测量仪器、传感器接口电路等。目标是设计出能够在较宽温度范围内保持高度稳定的电压基准电路。 其他说明:文中提供了详细的电路设计步骤和仿真代码,有助于读者理解和复现实验结果。同时,强调了实际应用中需要注意的问题,如工艺偏差和电源噪声的影响。
2025-05-09 14:17:20 1.19MB
1