Pascal VOC 2012数据集是计算机视觉领域内一个著名且广泛使用的数据集,它主要被设计用来解决图像理解和计算机视觉中的识别问题。这个数据集包括了20类不同的物体类别,并为每张图片提供了相应的边界框(用于目标检测任务)、分割掩码(用于图像分割任务)以及图像级别标签(用于图像分类任务)。 U-Net模型是一种用于图像分割的卷积神经网络,它特别适合于医学图像分割和其他像素级的预测任务。U-Net的网络结构是对称的,它的设计借鉴了编码器-解码器的概念,通过一系列的卷积层、激活函数和池化层来提取图像的特征,并使用上采样和跳跃连接来重建图像的每个像素位置。U-Net的关键特点在于它的跳跃连接(skip connections),这些连接能够将编码器部分的特征图与解码器对应的层直接相连,从而帮助网络更好地恢复图像细节,这对于分割任务至关重要。 在使用Pascal VOC 2012数据集进行U-Net模型训练时,研究者和开发者通常会关注如何提高模型的准确性,减少过拟合,以及如何提高模型处理数据的速度。此外,数据增强、网络架构的调整、损失函数的选择和优化算法等都是提高分割性能的重要因素。 由于Pascal VOC 2012数据集已经预设了标准的训练集和测试集划分,研究人员可以直接使用这些数据集来训练和测试他们的U-Net模型。数据集中的图像涵盖了各种场景,包括动物、交通工具、室内场景等,这使得训练得到的模型能够具有较好的泛化能力。 除了用于学术研究,Pascal VOC 2012数据集还被广泛应用于商业产品开发中,比如自动驾驶汽车的视觉系统,智能安防监控的异常行为检测,以及在医疗领域内对于CT和MRI扫描图像的分割等。 为了更好地使用这个数据集,开发者通常需要对图像数据进行预处理,比如归一化、裁剪和数据增强等,以改善模型训练的效果。同时,因为U-Net模型在医学图像处理中尤其受到青睐,所以它的一些改进版也被广泛研究,比如U-Net++和U-Net3+,这些模型在保持U-Net原有优势的基础上,进一步提升了对细节特征的捕捉能力。 Pascal VOC 2012数据集与U-Net模型结合,为图像处理任务提供了强有力的工具。开发者可以通过这种结合来解决复杂的图像理解问题,同时也能够在此过程中积累对深度学习模型及其在实际问题中应用的经验。
2025-04-11 20:13:58 37KB
1
本文参考链接详细介绍如何使用Jsoup包抓取HTML数据,是一个纯java工程,并将其打包成jar包。希望了解如何用java语言爬虫网页的可以看下。详见博文: http://blog.csdn.net/yanzi1225627/article/details/38308963
2025-04-06 19:16:02 385KB jsoup
1
在本文中,我们将深入探讨如何在Microsoft Foundation Class (MFC) 库中使用PNG图像来创建具有透明效果的按钮,并且会提供一个基于VS2015的完整工程示例。MFC是Microsoft为Windows应用程序开发提供的C++类库,它简化了Windows API的使用,使得开发者能够更方便地构建桌面应用程序。 PNG(Portable Network Graphics)是一种支持透明度的位图格式,通过使用Alpha通道,可以实现半透明和完全透明的效果。在MFC应用中,我们通常使用CBitmap和CDC类来处理图像,但它们并不直接支持PNG的透明特性。因此,我们需要引入额外的库,如libpng或GDI+,来解析PNG文件并利用其透明度信息。 1. **libpng库集成**:在MFC项目中,首先需要链接libpng库。这通常涉及到下载libpng源码,编译为动态或静态库,然后将库文件添加到项目的链接器设置中。同时,还需将对应的头文件路径加入到项目配置中。 2. **解析PNG图像**:使用libpng库提供的API,例如`png_create_read_struct()`和`png_init_io()`,来初始化读取结构并设置输入流。接着调用`png_read_image()`和`png_read_end()`读取图像数据。 3. **创建设备上下文对象**:在MFC中,CDC类代表设备上下文,用于图形绘制。创建一个CDC实例,并使用`CreateCompatibleDC()`创建一个兼容的设备上下文,以便绘制到内存位图。 4. **加载PNG到内存位图**:利用libpng解析出的像素数据,创建一个CBitmap对象,并将其绑定到兼容设备上下文。这个过程可能需要一些转换,因为MFC的CBitmap不直接支持Alpha通道,所以可能需要手动处理Alpha值。 5. **处理按钮状态**:在MFC中,按钮的状态包括普通、鼠标悬停(高亮)和禁用(灰度)。对于高亮状态,可以创建一个CBrush对象,使用`SetBkColor()`设置为按钮的高亮颜色,然后使用`CreateHatchBrush()`创建一个刷子,绘制高亮效果。对于灰度效果,可以使用算法将RGB颜色转换为灰度。 6. **重绘按钮**:在OnPaint()函数中,创建一个PAINTSTRUCT结构,然后调用BeginPaint()和EndPaint()进行安全的绘画。使用SelectObject()选择CBitmap到兼容设备上下文,根据按钮状态选择合适的图像,然后使用DrawState()函数绘制按钮。DrawState()函数可以自动处理按钮的各种状态,如按下、鼠标悬停等。 7. **事件处理**:为按钮添加消息处理函数,例如ON_WM_LBUTTONDOWN()、ON_WM_LBUTTONUP()和ON_WM_MOUSEMOVE(),根据鼠标事件更新按钮状态。 8. **资源管理**:在程序运行结束后,记得释放所有分配的资源,如CBitmap、CDC和设备上下文。 在提供的"PNG透明按钮工程"压缩包中,应包含以下组件: - 工程文件(.vcxproj) - 源代码文件(.cpp和.h) - libpng库文件(.lib和.dll) - 示例PNG图像文件 - 资源文件(.rc) 通过阅读和分析这些文件,你可以理解如何在MFC中实现PNG透明按钮,并将其应用到自己的项目中。这个示例是一个很好的起点,展示了如何将现代图像格式与MFC的经典API结合,为Windows应用程序增添更多视觉吸引力。
2025-04-03 11:44:09 1.01MB
1
选用M 12 Timing Oncore Receiver GPS模块、Cyclone Ⅱ系列EP2C8现场可编程逻辑门阵列(FPGA)、10MHz高精度恒温晶振等设计硬件电路,实现GPS时钟在失步情况下精确对时。由GPS模块接收GPS卫星授时信号,输出秒脉冲和GPS时标至FPGA,同时恒温晶振10MHz脉冲信号输至FPGA,经FPGA处理后的秒脉冲信号和GPS时标信息通过驱动电路并行送到串口或光纤模块。软件分成秒脉冲上升沿判别、10MHz晶振脉冲计数、GPS失步情况下秒脉冲生成、GPS时标接收/发送4个功能模块,用VHDL语言对各软件模块进行功能开发,并给出了程序清单。仿真和试验结果表明,该方法可保证GPS时钟在失步12h内秒脉冲误差小于50μs。
2025-04-01 16:57:51 830KB
1
mianbo1.m文件为利用相移法提取瑞雷波频散曲线的主程序。PhaseShiftOfSW.m文件为相移法的封存程序。calcbase.m和fastcalc.m为快速矢量传递算法正演频散曲线的程序,可在我主页另一资源中获取。主程序中还有对提取曲线与正演曲线做均方差和相关系数的部分,判断相移法提取的精度。另外附带seismo_w为正演好的面波程序,可以进行测试。
2025-03-31 20:25:37 5.28MB 频散曲线
1
本文将深入探讨如何使用Pyboard、MicroPython编程语言以及NB-IoT通信模块BC26,结合DHT11温湿度传感器,通过MQTT协议发送数据。这些技术在物联网(IoT)应用中广泛使用,使得设备能够远程监控环境条件并进行数据交换。 Pyboard是一种基于微控制器的开发板,它搭载了STM32微处理器,具有丰富的GPIO接口,适用于各种硬件交互。MicroPython是Python编程语言的一个精简版,设计用于嵌入式系统,使得开发者可以在Pyboard这样的硬件平台上轻松编写程序。 DHT11是一款经济实惠的数字温湿度传感器,它集成了温度和湿度传感器,能提供精确的环境读数。传感器通过单线接口与Pyboard通信,发送温度和湿度值。在MicroPython代码中,我们需要正确配置这个接口,读取传感器的数据,并将其转化为可发送的格式。 接下来,我们要讨论的是NB-IoT(窄带物联网)技术。这是一种低功耗广域网(LPWAN)标准,专为大规模物联网设备设计,具有覆盖范围广、连接密度高和低功耗的特点。BC26是一款支持NB-IoT的模块,可以连接到蜂窝网络,从而实现远程数据传输。在MicroPython代码中,我们需要设置BC26模块的网络参数,连接到运营商的IoT网络,并确保其处于激活状态。 MQTT(Message Queuing Telemetry Transport)是一种轻量级的发布/订阅消息协议,特别适合于资源有限的设备和低带宽、高延迟的网络环境。在物联网应用中,MQTT协议常用于设备间的数据通信。Pyboard上的MicroPython程序需要实现MQTT客户端,连接到服务器(通常称为MQTT broker),并订阅或发布消息。对于本例,Pyboard将作为发布者,定期发送DHT11传感器读取的温湿度数据到预设的主题。 为了实现这个功能,你需要按照以下步骤编写代码: 1. 初始化Pyboard,设置DHT11传感器的GPIO接口,并读取温度和湿度值。 2. 配置BC26模块,包括SIM卡信息、APN设置以及连接到NB-IoT网络。 3. 实现MQTT客户端,连接到MQTT broker,并设置订阅和发布主题。 4. 将DHT11传感器的温湿度数据构建成MQTT消息,然后发布到指定主题。 5. 设置定时器,定期重复以上步骤,以便持续发送数据。 在实际应用中,可能还需要考虑错误处理、数据校验、网络连接丢失后的重连策略等。此外,为了安全和效率,通常会将数据加密后再发送,以及在服务器端设置相应的数据存储和分析机制。 这个项目展示了如何将Pyboard、MicroPython、NB-IoT通信模块和MQTT协议集成,构建一个远程监测环境温湿度的系统。这种技术方案在农业、气象、智能家居等领域有着广阔的应用前景。通过不断学习和实践,开发者可以掌握更多物联网技术,为现实世界的问题提供智能化解决方案。
2025-03-28 15:45:00 7KB Pyboard MicroPython NB-IoT BC26
1
内容概要:本文介绍了一种利用DeeplabV3+模型进行视杯与视盘分割的方法,目的是为了辅助青光眼的早期诊断。主要技术包括数据预处理、使用ResNet18改造的DeeplabV3+模型、超参数调优、可视化结果评估及简单的GUI设计。通过这一系列流程,能够有效提升模型的准确性和实用性。 适合人群:适用于医学影像研究人员、深度学习爱好者和技术开发者,尤其关注医疗AI应用领域的人士。 使用场景及目标:该项目可以应用于临床眼科诊疗系统中,帮助医生快速高效地识别出视网膜图像中的关键结构;对于科研工作者而言,该模型还可以作为研究基线模型进一步探索新的改进方法。
2025-03-27 20:59:16 33KB DeeplabV3+ 医学影像处理 PyTorch
1
基于Keil软件与C语言开发,利用OV7725照相机与STM32F1识别车牌
2025-03-26 21:29:41 3.8MB stm32 源码软件 arm 嵌入式硬件
1
在Windows操作系统中,开发人员可以使用Performance Data Helper(Pdh)库来监控系统的各种性能指标,如磁盘使用情况、网络流量、IO读写速率以及CPU使用率等。Pdh是一个强大的API,允许C++程序员,尤其是使用MFC(Microsoft Foundation Classes)框架的开发者,以编程方式获取这些关键信息。本项目名为"ServerMonitor",显然它是一个用于实时监控服务器性能的应用程序。 我们要理解Pdh的基本用法。Pdh API提供了`PdhOpenQuery`函数来创建一个查询对象,它是收集性能数据的基础。接着,我们可以使用`PdhAddCounter`添加我们感兴趣的计数器,比如"\PhysicalDisk(_Total)\% Disk Time"来获取所有磁盘的平均使用时间,或者"\Network Interface(*)\Bytes Total/Sec"来监控网络接口的总流量。每个计数器都代表一个特定的性能指标。 对于磁盘性能监控,Pdh可以提供如"\LogicalDisk(_Total)\% Disk Time"(磁盘时间百分比)、"\LogicalDisk(_Total)\% Disk Read Time"和"\LogicalDisk(_Total)\% Disk Write Time"(分别表示读写时间百分比)等计数器,这些都能反映出磁盘的繁忙程度。同时,"\LogicalDisk(_Total)\Current Disk Queue Length"(当前磁盘队列长度)也能反映磁盘I/O请求的等待情况。 网络流量的监控则依赖于"\Network Interface(*)\Bytes Total/Sec"(每秒传输的字节数)和"\Network Interface(*)\Packets/sec"(每秒传输的数据包数)等计数器,通过这些数据可以计算出上传和下载的速率。 CPU使用率的监控通常使用"\Processor(_Total)\% Processor Time"计数器,它表示处理器在执行非空闲线程时花费的时间比例。 在MFC环境中,可以创建一个定时器类,定期调用`PdhCollectQueryData`来更新性能数据,然后使用`PdhGetFormattedCounterValue`将原始数据转换为可读的格式。开发过程中,可能还需要处理`PdhValidatePath`和`PdhValidateCounter`返回的错误,确保添加的计数器路径和计数器本身是有效的。 项目中的"ServerMonitor.VC.db"是Visual Studio的数据库文件,用于存储项目的一些元数据。"ServerMonitor.sln"是解决方案文件,包含了项目的配置和依赖关系。".vs"文件夹包含了Visual Studio工作区的相关设置,"x64"目录可能包含了针对64位架构的编译输出。"ServerMonitor"可能是项目源代码所在的文件夹,而"ipch"则是Intel Precompiled Header(预编译头文件)的缓存目录。 总结起来,"Windows利用Pdh读取机器的磁盘,网络,CPU等信息"这个项目利用了Pdh API,结合C++和MFC,实现了对服务器性能的实时监控,提供了对磁盘使用、网络流量和CPU利用率等关键指标的可视化展示。开发人员可以以此为基础,进一步定制化监控需求,比如添加报警机制或生成性能报告。
2025-01-10 17:35:47 88.75MB 网络流量 IO读写速率
1
标题中的“pb利用datawindow倒计时”指的是在PowerBuilder(简称PB)环境中,通过DataWindow控件实现倒计时功能。PowerBuilder是一款强大的客户端/服务器应用开发工具,而DataWindow是PB中用于数据展示和操作的核心组件。在这个场景中,开发者想要在用户界面上创建一个倒计时计时器,用户可以自定义倒计时的总秒数。 描述中提到“仅利用数据窗口进行倒计时显示”,意味着开发者计划不依赖额外的控件或编程逻辑,而是直接在DataWindow中处理倒计时的逻辑和显示。这可能涉及到在DataWindow中创建一个计算字段,该字段的值动态更新以反映剩余的倒计时时间。同时,“在开始按钮中自己设置倒计时时间(以秒为单位)”意味着有一个启动倒计时的按钮,用户点击后输入倒计时的总秒数,然后倒计时开始并在DataWindow中显示。 标签中的“pb”、“datawindow”和“倒计时”进一步强调了这个话题的重点。在PowerBuilder中,倒计时通常涉及使用定时器对象(如PB的Timer控件),每隔一定时间间隔更新DataWindow的显示。开发者可能需要使用事件处理函数,例如Timer的"Timer"事件,来触发对倒计时的更新,并确保在达到零时停止倒计时。 从提供的压缩包文件名称“extime.pbl”和“extime.pbt”来看,这里可能包含了项目的源代码和项目文件。`.pbl`是PowerBuilder的库文件,里面包含了应用程序的源代码、对象和资源。`.pbt`是项目文件,保存了关于项目的信息,如源代码的位置、编译选项等。通过打开这些文件,我们可以看到具体的代码实现,包括DataWindow的定义、事件处理函数以及如何启动和更新倒计时的逻辑。 在实现这个功能时,开发者可能需要关注以下几点: 1. 创建一个DataWindow,包含一个表示倒计时的计算字段。 2. 在启动按钮的Click事件中,读取用户输入的倒计时秒数并初始化倒计时。 3. 添加一个Timer控件,设置合适的间隔时间(比如1秒),并关联一个事件处理函数。 4. 在Timer事件处理函数中,更新DataWindow中倒计时字段的值,直到达到零。 5. 当倒计时结束时,可能需要清除或重置DataWindow的状态,或者显示一个提示信息。 这个例子展示了如何在PowerBuilder中利用DataWindow的灵活性和事件驱动的编程模型,创建一个用户交互式的倒计时功能,为用户提供了一种直观的方式来追踪和管理时间。对于初学者和有经验的PB开发者来说,这是一个很好的学习和实践案例。
2025-01-01 22:28:40 7KB datawindow
1