hmm_market_behavior hmm_market_behavior.ipynb-主要研究文件。 hmm_market_behavior_following_btcusd_catalyst.py-使用Catalyst框架的交易策略示例。 quandl_BITFINEX_BTCUSD_final_model.pkl-训练模型。 您可以在本文中阅读更多内容
1
优化半监督学习 该matlab代码提供了已开发和分发的原始版本的计算优化版本。 提供了一个matlab代码来近似拉普拉斯特征向量。 他计算了Laplace Beltrami算子的本征函数,然后对其进行插值以计算laplacian本征向量。 该matlab代码提供了用于计算近似拉普拉斯特征向量的优化过程。 下图显示了使用三种不同过程计算拉普拉斯平滑度的时间分析。 使用精确的拉普拉斯特征向量(EigVector) 使用Laplace Beltrami算子本征函数(Eigfunctions-Fergus) 对Laplace Beltrami算子本征函数使用优化方法(Eigfunctions-Taha) ##动机 我们将交互式图像分割问题转换为半监督学习问题。 我们使用了 matlab代码来测试我们想法的有效性。 尽管结果令人鼓舞,但为小图像计算拉普拉斯平滑度所需的时间太大。 因此,我们优
2022-03-25 18:49:55 80KB MATLAB
1
协同训练是半监督的一个很好的范例,它要求用两个特征视图来描述数据集。 许多协同训练算法都有一个显着的特征:应以高置信度预测所选的未标记实例,因为高置信度得分通常表示相应的预测是正确的。 不幸的是,使用这些高置信度未标记实例并不总是能够提高分类性能。 本文提出了一种新的半监督学习算法,结合了联合训练和主动学习的优点。 该算法根据高置信度和最近邻两个准则应用协同训练来选择最可靠的实例,以提高分类器的性能,并利用具有人类注释能力的信息量最大的实例来提高分类性能。 在几个UCI数据集和自然语言处理任务上进行的实验表明,我们的方法在牺牲相同的人工量的情况下实现了更显着的改进。
2022-03-25 15:37:30 2.08MB Semi-supervised learning; Co-training; Confidence
1
包含4个文档:机器人学习简介、机器学习快速入门、应用无监督学习、应用监督式学习
2022-03-25 15:29:39 7.53MB 人工智能 机器学习 入门 无监督学习
1
自监督学习由于能够避免标注大规模数据集的成本而受到欢迎。它能够采用自定义的伪标签作为监督,并将学习到的表示用于几个下游任务。具体来说,对比学习最近已成为计算机视觉、自然语言处理(NLP)等领域的自主监督学习方法的主要组成部分。它的目的是将同一个样本的增广版本嵌入到一起,同时试图将不同样本中的嵌入推开。
2022-03-24 21:20:16 5.18MB 对比学习 监督学习
1
PG学习 一种用于半监督学习的高效有效的学习图算法。 (MATLAB代码) 说明:运行代码和示例 在使用代码之前,您应该编译util / lib / mtimesx /文件夹中的mtimesx lib。 请参考 。 对于Mac OS用户,您可以首先使用Homebrew安装openblas库,然后运行 bias_lib = 'path to libblas.dylib' mex('-DDEFINEUNIX','-largeArrayDims','mtimesx.c',blas_lib) 安装所需的库后,您应该在根文件夹EXCUTE的main.m。 之后,您可以在根文件夹下运行所有​​的matlab文件。 在示例文件夹中,我们提供了有关单线程版本PG-Learn,超宽带并行版本PG-Learn以及一些基线的示例,其中包括网格搜索,随机搜索,MinEnt,AEW和IDML。 此外,我们还提供
2022-03-24 10:14:54 10.63MB semi-supervised-learning MATLAB
1
Hands-On Unsupervised Learning Using Python How to Build Applied Machine Learning Solutions from Unlabeled Data Ankur A. Patel
2022-03-09 11:09:09 4.57MB 无监督学习 机器学习 Python 深度学习
1
无监督学习 五个不同聚类算法之间的比较 有关报告和结果的信息,请阅读“无监督学习的中期工作.pdf”文件
2022-03-08 15:01:26 4.7MB Python
1
SfM学习者 该代码库实现了本文所述的系统: 通过视频无监督地学习深度和自我运动 ,,, 在CVPR 2017(口头)中。 有关更多详细信息,请参见。 如有任何疑问,请联系( )。 先决条件 该代码库是使用Tensorflow 1.0,CUDA 8.0和Ubuntu 16.04开发和测试的。 运行单视图深度演示 我们提供了用于运行我们的单视图深度预测模型的演示代码。 首先,通过运行以下命令下载预训练的模型 bash ./models/download_depth_model.sh 然后,您可以使用提供的ipython-notebook demo.ipynb来运行演示。 准备训练数据 为
1
使用DEAP数据集中记录的EEG信号对情绪进行分类,以使用机器学习算法(如支持向量机和K - 最近邻)实现高精度得分。 1)将数据集存储在文件夹中 - > data/ 2)运行 runFile.py 文件