FPGA通过ROM IP加载COE文件的方式将某图片的1/12存错到片上RAM中,控制1s发送30张图片到千兆网口,一张图片的为12次的ROM数据。相关内容请查看“FPGA1—ROM存储经千兆以太网口到Qt上位机显示”
2025-09-09 10:45:41 107.44MB FPGA
1
FPGA多运动目标检测(背景帧差法); Modelsim仿真 Xilinx FPGA + ov5640 + VGA LCD HDMI显示的Verilog程序(通过四端口的DDR3,进行背景图像和待检测图像的缓存) 使用背景帧差法实现多个运动目标的检测,并进行了识别框合并处理 ,FPGA; 背景帧差法多运动目标检测; Modelsim仿真; Xilinx FPGA; ov5640摄像头; VGA LCD HDMI显示; DDR3缓存; 识别框合并处理。,基于FPGA的背景帧差法多运动目标检测与识别合并处理
2025-09-09 08:37:29 1.31MB safari
1
稳定驱动,带五次平均值,1rdgs/s,五位半电压表,带前端电路可负压采样,单18650供电或USB,【F103单片机HAL库硬件spi驱动LTC2400+OLED就地显示,五位半模块-哔哩哔哩】 https://b23.tv/ERXvOO6 在深入探讨F103单片机使用HAL库实现硬件SPI驱动LTC2400模数转换器(ADC)并结合OLED显示屏就地显示功能之前,我们有必要先了解一下这些组件和相关技术的基本概念。 F103单片机是STMicroelectronics(意法半导体)生产的一款高性能的32位微控制器,它属于STM32系列,广泛应用于嵌入式系统和物联网领域。HAL库(硬件抽象层库)是ST公司为其MCU提供的软件库,它提供了一套标准的API接口,用于简化硬件编程,使得开发者能够不必深入了解硬件的底层细节而专注于应用层的开发。 LTC2400是一款24位的Delta-Sigma模数转换器,具有高精度和高分辨率的特点,常用于精确的模拟信号采集。它能够将模拟信号转换为数字信号,并通过SPI接口与微控制器通信。该转换器通常用在精密测量和数据采集系统中。 OLED(有机发光二极管)显示屏则是一种显示技术,它可以提供高对比度和视角较宽的显示效果。与传统的LCD显示屏相比,OLED在显示黑色时可以完全关闭像素,因此更加省电,并且响应速度更快。 在这个项目中,F103单片机通过HAL库驱动LTC2400进行模拟信号采集,随后处理采集到的数据,将结果显示在OLED屏幕上。整个系统具备以下特点: 1. 使用五次平均值算法来提高测量的稳定性和准确性。这种算法通过多次采样并计算平均值来减少随机误差,从而得到更稳定可靠的测量结果。 2. 系统能够以1rdgs/s(读数每秒)的速度进行数据采集。这意味着每秒钟可以进行一次读数,对于动态信号的监测十分有用。 3. 设计支持五位半的电压表功能,能够实现高精度的电压测量。 4. 系统的前端电路设计支持负压采样,这意味着可以测量低于地电位的信号,这在一些特殊的测量需求中非常有用。 5. 该系统可以使用单个18650电池供电,也可以通过USB接口供电,这为系统的便携性和适用性提供了便利。 6. 项目源代码中可能包含与硬件相关的初始化设置,数据采集流程,以及数据显示的程序代码。 7. 从提供的标签来看,“驱动 LTC2400 24位ADC 电压表”,可以推测该工程也包含对LTC2400这款高精度ADC的初始化、配置、读取等相关操作。 这个项目展示了如何利用F103单片机结合高效的数据处理算法和直观的显示技术,实现了一个精确、便携的数字电压测量系统。通过HAL库提供的标准API,开发者可以更加快速和容易地将LTC2400 ADC与OLED显示屏整合到自己的嵌入式系统中。
2025-09-08 11:50:45 13.29MB 24位ADC
1
本资源内容概要: 这是基于51单片机的两路数码管显示交通灯设计,包含了电路图源文件(Altiumdesigner软件打开)、C语言程序源代码(keil软件打开)、元件清单(excel表格打开)。 本资源适合人群: 单片机爱好者、电子类专业学生、电子diy爱好者。 本资源能学到什么: 可以通过查看电路学习电路设计原理,查看代码学习代码编写原理。 本资源使用建议: 建议使用者需要具备一定电子技术基础,掌握一些常用元器件原理,例如三极管、二极管、数码管、电容、稳压器等。了解C语言基础设计原理,能看懂基础的电路图,具备一定的电路图软件使用能力。
2025-09-06 02:21:01 455KB 51单片机
1
基于领航者ZYNQ7020平台的手写数字识别系统:结合OV7725摄像头数据采集与HDMI显示技术优化卷积神经网络识别性能的工程实现,基于领航者ZYNQ7020实现的手写数字识别工程。 ov7725摄像头采集数据,通过HDMI接口显示到显示屏上。 在FPGA端采用Verilog语言完成硬件接口和外围电路的设计,同时添加IP核实现与ARM端交互数据。 ARM端完成卷积神经网络的书写数字的识别。 在此工程的基础上,可以适配到正点原子的其他开发板上,也可以继续在FPGA端加速卷积神经网络。 基于领航者ZYNQ7020实现的手写数字识别工程… ,基于领航者ZYNQ7020的手写数字识别工程;ov7725摄像头采集;HDMI显示;FPGA设计Verilog接口与外围电路;ARM端卷积神经网络识别;工程适配与FPGA加速。,"基于ZYNQ7020的领航者手写数字识别系统:OV7725摄像头数据采集与HDMI显示"
2025-09-04 10:40:55 332KB
1
在本项目中,我们将深入探讨如何使用Arduino IDE与ESP32微控制器,配合TFT 7789显示屏来创建一个独特的太空人表盘显示。这个项目结合了硬件编程、图形设计以及实时数据获取,为爱好者提供了一个有趣的DIY体验。 我们需要了解ESP32。ESP32是一款高性能、低功耗的Wi-Fi和蓝牙双模物联网微控制器,由Espressif Systems制造。它拥有两个32位的RISC-V CPU核心,支持多种外设接口,如SPI、I2C、UART等,并且内置丰富的模拟和数字输入/输出引脚,非常适合于各种物联网应用,包括我们这个项目中的显示屏驱动。 TFT 7789是一种流行的彩色液晶显示模块,通常用于嵌入式系统,因为它可以显示丰富的颜色并具有较高的分辨率。这种屏幕采用SPI接口,可以通过GPIO引脚与ESP32进行通信。在代码中,我们需要使用特定的库,如Adafruit GFX和Adafruit ILI9341,来驱动和绘制屏幕内容。 在实现太空人表盘显示的过程中,我们将使用Arduino IDE进行编程。Arduino IDE是一个用户友好的开发环境,适合初学者和专业人士。我们需要在IDE中安装ESP32板定义和支持库,以便编译和上传代码到ESP32。在编写代码时,我们需要初始化SPI接口和TFT屏幕,然后利用GFX库的功能创建表盘图形,包括指针、数字和背景。 接下来,我们要关注的是如何在显示屏上动态更新时间和天气信息。这可能需要通过Wi-Fi连接到互联网,获取实时的天气API数据。例如,我们可以使用OpenWeatherMap或Dark Sky等免费或付费的API服务。获取数据后,将它们解析并转换为适合在表盘上显示的格式。这可能涉及到日期和时间的处理,以及温度、湿度等气象参数的显示。 此外,为了创建太空人的形象,可能需要使用到像素画技巧或者从外部资源导入图像。在代码中,我们需要将这些元素定位在屏幕上的正确位置,并根据时间的变化更新它们的状态,例如,让太空人的手臂指向当前的小时数。 项目中的"太空人天气时钟源码及说明"文件很可能包含了完成这个项目的全部源代码和详细的步骤说明。通过阅读源码,我们可以学习到如何组织程序结构,如何调用库函数,以及如何处理数据交互。而说明文档则可能涵盖了如何设置开发环境、如何连接硬件、如何获取API密钥等重要信息。 "复刻ARDUINO+ESP32+TFT 7789驱动显示太空人表盘"是一个集成了物联网技术、图形编程和创意设计的综合实践项目。通过参与这个项目,不仅可以提升你的硬件编程能力,还能锻炼你解决问题和创新思维的能力。同时,这也是一个很好的学习平台,帮助你深入了解ESP32的潜力和TFT屏幕的使用方法。
2025-09-04 10:07:38 5.46MB ESP32
1
【RTD2556VD显示芯片原理图详解】 RTD2556VD是一款专用于将DisplayPort(DP)信号转换为Embedded DisplayPort(eDP)信号的显示芯片,适用于笔记本电脑、显示器等设备中。该芯片由Vinxin公司提供,其核心功能是实现接口之间的信号转换,确保视频数据的准确传输。 在电路原理图中,我们能看到多个关键的电源和信号线,这些线分别负责为不同部分供电和传输数据。例如,"Xtal"代表晶振,它为系统提供稳定的时钟信号;"RX_33VADC_V33PVCCAUDIO_HP_AVDD33AUDIO_VDD33"是音频部分的电源,用于驱动音频输出;"eDPTX_VDD33VCCK_ONGDI_11VeDPTX_VDD11"是eDP发送器的电源和控制信号,用于驱动eDP接口。 在音频部分,我们可以看到左右声道的连接,如"Pin2-->Left Channel"和"Pin3-->Right Channel",它们通常连接到耳机插孔或内置扬声器。"BLUE Jack"表示蓝色音频插孔,可能支持立体声输出。"PIN58~Pin67 HI Z, When Power Saving or Power Down"意味着在节能或关机模式下,这部分引脚会被设置为高阻态,以降低功耗。 eDP接口的相关引脚,如"eDP_RX3NeDP_RX3PeDP_RX1PeDP_RX1NeDP_RX0"等,是用来接收eDP信号的,而"eDP_TX"系列引脚则用于发送DP信号。"AUX CH"(辅助通道)用于控制和诊断,如"eDPTX_AUX_PeDPTX_AUX_N"是辅助通道的差分对,"DP_HOT_PLUG"和"DP_CABLE_DET"则检测DP连接的状态和线缆是否正确连接。 SPI(Serial Peripheral Interface)接口在电路中用于与外部存储器(如iFLASH)进行通信,"SPI_SCLK_i", "SDIN", "SDOUT", "CEB_i", "WP_i"等引脚分别对应SPI的时钟、数据输入、数据输出、片选和写保护信号。"EEPROM_WP"和"EEPROM_WPXI"用于控制外部EEPROM的写保护。 此外,"ADC_KEY1"和"ADC_KEY2"可能用于模拟输入,如触摸屏或按键的检测。"V33SAUDIO_HP_AVDD33V33SAUDIO_VDD33"为模拟音频电路供电,确保高质量音频输出。"LINE_INLLINE_INR"则是线路输入接口,允许外部音频源接入。 总体来说,RTD2556VD显示芯片通过复杂的电路布局,实现了DP到eDP的信号转换,同时提供了音频处理、控制接口和电源管理等功能,确保了显示器或笔记本电脑的正常显示和多媒体性能。其电路设计考虑到了能效、信号质量以及用户交互性,是现代显示设备中不可或缺的一部分。
2025-09-01 18:03:33 334KB
1
本文将详细介绍RTD2556QR显示芯片的相关知识,这是一种支持2K分辨率的高性能显示处理芯片,广泛应用于高清显示设备中。在电路设计中,了解其工作原理、接口配置以及关键信号的连接至关重要。 RTD2556QR芯片的核心功能是处理高清视频信号,提供2K(2048x1080或更高)的图像输出。它集成了多种视频处理模块,如色彩空间转换、缩放、去隔行等,确保了高质量的图像显示效果。 在电路图中,我们可以看到多个关键电压和电源引脚,如VDD、V33、VCCK_ON/OFF等。这些电源引脚为芯片的不同部分提供稳定的工作电压。例如,VDD、V33和V11S_ON/OFF通常用于为数字逻辑部分供电,而VCCK_ON/OFF则控制时钟发生器的电源,确保正确时序。 此外,音频处理也是RTD2556QR的一个重要组成部分。电路中涉及到多个音频接口,如I2C、SPI、SDA、SCL等,它们用于与外部音频编解码器或其他音频设备通信。例如,I2C地址0x4A和0x48可能分别对应于不同操作模式下的设备地址选择。固定增益模式(Fixed Gain Mode)可以通过VDD和GND引脚进行配置,以适应不同的音频输入输出需求。 在视频接口方面,RTD2556QR支持多种接口标准,如TMDS(Transition Minimized Differential Signaling)用于HDMI传输,还有可能支持DisplayPort(DP)。电路中的TMDS_REXT、DP_SINK_ASS_N0/P0、LANE1N_0等引脚表明了这些接口的存在。此外,DDC(Display Data Channel)用于与显示设备进行EDID(Extended Display Identification Data)交换,以获取显示器的规格信息。 此外,电路中还提到了GPIO(General-Purpose Input/Output)引脚,它们可以灵活配置为输入或输出,以实现各种控制功能。例如,PIN153可以被用作GPIO,用于控制外部设备的状态。 在电源管理方面,RTD2556QR的电源配置对系统稳定性至关重要。例如,eDPTX_VDD11和eDPTX_VDD33分别控制不同的电源域,以满足低功耗和高电流的需求。同时,GDI_11V引脚可能用于驱动显示器的背光系统,通过PWM(脉宽调制)信号进行亮度控制。 电路图中还包含了一些与EMI(Electromagnetic Interference)抑制相关的预留引脚,如Reserve for EMI Depression Mode2,这些设计有助于减少电路对外部环境的电磁干扰,提高系统的电磁兼容性。 RTD2556QR是一款功能强大的显示处理芯片,其电路设计涵盖了视频、音频处理、电源管理等多个方面。理解并正确配置这些关键信号和接口,对于构建一个高效、稳定的2K分辨率显示系统至关重要。
2025-09-01 09:06:59 368KB
1
Android-SmartQueue 基于优先级队列写的一个SmartQueue(可控制多个线程的顺序执行、View的顺序显示) #效果: #Usage ##多个线程顺序执行 你可以创建一个ThreadPriorityQueue对象,然后通过.run()方法让线程开始执行,创建ThreadPriorityQueue对象的时候,你可以通过addThread()方法添加线程,其中第一个参数是Thread对象,第二个参数是你自己设置线程的优先级(值范围是1~10,优先级越高线程越先执行,当设置的值不在这个范围则默认为1): ThreadPriorityQueue mThreadPriorityQueue = new ThreadPriorityQueue.QueueBuilder() .addThread(thread1, 10).addThrea
2025-08-27 15:49:07 106KB Java
1