实用的时间序列分析 这是出版的《 的代码库。 它包含从头到尾完成本书所必需的所有支持项目文件。 关于这本书 时间序列分析使我们能够分析一段时间内的某些数据并了解数据随时间变化的模式,这本书将使您了解时间序列分析背后的逻辑并将其应用于各个领域,包括财务,业务和社交媒体。 说明和导航 所有代码都组织在文件夹中。 每个文件夹均以数字开头,后跟应用程序名称。 例如,Chapter02。 该代码将如下所示: import os import pandas as pd %matplotlib inline from matplotlib import pyplot as plt import seaborn as sns 您将需要Anaconda Python发行版来运行本书中的示例,并编写自己的Python程序以进行时间序列分析。 可从免费下载。 本书的代码示例是使用Jupyter Noteb
2023-10-05 22:27:33 2.94MB JupyterNotebook
1
芯片序列分析 Snakemake管道 我开发了一个基于Snakemake的ChIP-seq管道: 。 和ATACseq管道: ChIP-seq的资源 : :来自ENCODE的元数据的汇编。 一个bioc包,用于访问ENCODE的元数据并下载原始文件。 论文: 。 序列为.sra格式,需要使用sratools转储到fastq中。 。 序列以fastq格式提供。 用于核小体定位和TF ChIP-seq的工具和论文的集合 评论文章:解密ENCODE EpiFactors是一个表观遗传因子,相应的基因和产物的数据库。 生物明星手册。 我的ChIP-seq章节将于2017年4月发布! ReMap 2018对法规区域的综合ChIP-seq分析。 ReMap地图集包含来自公共数据集的485个转录因子(TF),转录共激活因子(TCA)和染色质重塑因子(CRF)的8000万个峰。 可以浏览或
1
泛函分析讲义(MIT辅助教材)Functional analysis lecture notes by T.B. Ward,英文非扫描版
2023-09-24 13:36:33 497KB 泛函分析 MIT
1
Data Structures and Algorithm Analysis in C++ Third Edition (Mark Allen Weiss) 答案 国外的下载要教师资格。这本书不简单。所谓的编程思想,就在这了。
2023-09-23 17:01:18 3.1MB Mark Allen Weiss 数据结构
1
Focusing on high-dimensional applications, this 4th edition presents the tools and concepts used in multivariate data analysis in a style that is also accessible for non-mathematicians and practitioners. It surveys the basic principles and emphasizes both exploratory and inferential statistics; a new chapter on Variable Selection (Lasso, SCAD and Elastic Net) has also been added. All chapters include practical exercises that highlight applications in different multivariate data analysis fields: in quantitative financial studies, where the joint dynamics of assets are observed; in medicine, where recorded observations of subjects in different locations form the basis for reliable diagnoses and medication; and in quantitative marketing, where consumers’ preferences are collected in order to construct models of consumer behavior. All of these examples involve high to ultra-high dimensions and represent a number of major fields in big data analysis. The fourth edition of this book on Applied Multivariate Statistical Analysis offers the following new features: A new chapter on Variable Selection (Lasso, SCAD and Elastic Net) All exercises are supplemented by R and MATLAB code that can be found on www.quantlet.de. The practical exercises include solutions that can be found in Härdle, W. and Hlavka, Z., Multivariate Statistics: Exercises and Solutions. Springer Verlag, Heidelberg. Table of Contents Part I Descriptive Techniques Chapter 1 Comparison of Batches Part II Multivariate Random Variables Chapter 2 A Short Excursion into Matrix Algebra Chapter 3 Moving to Higher Dimensions Chapter 4 Multivariate Distributions Chapter 5 Theory of the Multinormal Chapter 6 Theory of Estimation Chapter 7 Hypothesis Testing Part III Multivariate Techniques Chapter 8 Regression Models Chapter 9 Variable Selection Chapter 10 Decomposition of Data Matrices by Factors Chapter 11 Principal Components Analysis Chapter 12 Factor Analysis Chapter 13 Cluster Analysis Chapter 14 Discriminant Analysis Chapter 15 Correspondence Analysis Chapter 16 Canonical Correlation Analysis Chapter 17 Multidimensional Scaling Chapter 18 Conjoint Measurement Analysis Chapter 19 Applications in Finance Chapter 20 Computationally Intensive Techniques Part IV Appendix Chapter 21 Symbols and Notations Chapter 22 Data
2023-09-18 20:12:47 11.83MB Multivariate Data Analysis
1
Python for Data Analysis每个章节中的数据。
2023-09-09 11:38:00 40.33MB Python for Data Analysis
1
algorithm-ta-tutorial:作为南京大学“算法设计与分析”课程的技术援助之一提供的指南
2023-09-07 08:50:20 319.42MB algorithm tutorial algorithm-analysis problem-set
1
Radar Systems Analysis and Design Using MATLAB 的pdf及其代码,较详细
2023-08-14 16:50:11 4.48MB Radar Systems Analysis Using
1
matlab做信效度分析代码使用深度神经网络及其分析预测下颞(IT)多单元输出。 深度神经网络由多层组成,以处理输入图像。 以类似的方式,灵长类动物大脑的视觉皮层具有多个层,这些层处理从视神经传入的视觉刺激。 它们按以下顺序排列:V1,V2,V3,V4,IT(下颞)。 IT层类似于经过训练的DNN的最后一层,确定图像中的对象。 在该项目中,比较了灵长类动物大脑的视觉皮层(V4和IT)的5个区域中的2个区域与流行的DNN模型之间的比较。 用于比较的一些DNN模型是: HMO HMAX 像V1 像V2 克里热夫斯基等。 2012年 Zeiler&Fergus 2013 1.1)数据获取和使用 在显示测试对象(灵长类动物)测试图像的同时,从其V4和IT区域记录神经输出。 V4区域具有128个通道,通过该通道收集神经输出,而IT区域具有168个通道。 因此,灵长类动物大脑中一幅图像的IT表示是一个168维向量。 总共向灵长类动物显示了1960张图像,因此V4数据矩阵为1960x128,而IT数据矩阵为1960x168。 这是数据的链接: 这里仅使用多单位数据。 为了从DNN模型的最后一个完全连
2023-06-30 01:13:44 2.45MB 系统开源
1