基于python实现的CNN卷积神经网络手写数字识别实验源码+详细注释+数据集+项目说明+实验结果及总结.7z 人工智能课程作业 手写数字识别 数据集 详细注释 好理解 实验结果及总结 基于python实现的CNN卷积神经网络手写数字识别实验源码+详细注释+数据集+项目说明+实验结果及总结.7z
统计学期末课程作业_python自定义实现CNN_KNN_NN_SVM网络模型源码+说明文件.zip 【CNN实现】 cnn1.py: LeNet+ReLU; cnn2.py: 在cnn1的基础上加宽全连接层; cnn3.py: 在cnn2的基础上修改卷积核; cnn4.py: 在cnn3的基础上修改卷积核; cnn5.py: 在cnn4的基础上加宽全连接层; cnn6.py: 在cnn3的基础上加宽全连接层; cnn7.py: 在cnn6的基础上加宽全连接层; cnn8.py: 在cnn6的基础上加入Dropout层; 等等 【KNN实现】 knn.py: 标准KNN,k=1,3,5,7,9; 【NN实现】 nn1.py: 784-800-15 (修改激活函数); nn2.py: 784-2500-2000-1500-1000-500-15 (修改激活函数); nn3.py: 在nn2的基础上修改数据预处理方式; 【SVM】 svm.py: 核函数(linear,rbf,poly,sigmoid); 另包含【运行指南】和【最终选择模型】
2022-12-14 16:26:40 509.6MB CNN KNN NN SVM
基于python实现的广度优先遍历搜索(BFS)实验源码+代码详细注释+项目说明+实验结果及总结.7z 广度优先搜索算法(英语:Breadth-First-Search,缩写为BFS),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。BFS是一种盲目搜索法,目的是系统地展开并检查图中的所有节点,以找寻结果。 BFS会先访问根节点的所有邻居节点,然后再依次访问邻居节点的邻居节点,直到所有节点都访问完毕。在具体的实现中,使用open和closed两个表,open是一个队列,每次对open进行一次出队操作(并放入closed中),并将其邻居节点进行入队操作。直到队列为空时即完成了所有节点的遍历。closed表在遍历树时其实没有用,因为子节点只能从父节点到达。但在进行图的遍历时,一个节点可能会由多个节点到达,所以此时为了防止重复遍历应该每次都检查下一个节点是否已经在closed中了。
基于python实现的遗传算法实验源码+详细注释+项目说明+实验结果及总结.7z 人工智能课程作业 遗传算法具体步骤: (1)初始化:设置进化代数计数器t=0、设置最大进化代数T、交叉概率、变异概率、随机生成M个个体作为初始种群P (2)个体评价:计算种群P中各个个体的适应度 (3)选择运算:将选择算子作用于群体。以个体适应度为基础,选择最优个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代 (4)交叉运算:在交叉概率的控制下,对群体中的个体两两进行交叉 (5)变异运算:在变异概率的控制下,对群体中的个体进行变异,即对某一个体的基因进行随机调整 (6) 经过选择、交叉、变异运算之后得到下一代群体P1。
HTML5期末考核大作业源码 包含 个人、 美食、 公司、 学校、 旅游、 电商、 宠物、 电器、 茶叶、 家居、 酒店、 舞 蹈、 动漫、 服装、 体育、 化妆品、 物流、 环保、 书籍、 婚纱、游戏、 节日、 戒烟、 电影、 摄影、 文化、 家 乡、 鲜花、 礼品、 汽车、 其他 可满足大学生网页大作业网页设计作业需求, 喜欢的可以下载! 原生(HTML+CSS+JS),网页作品代码简单,可使用任意HTML编辑软件(如:`Dreamweaver、HBuilder、Vscode 、Sublime 、 Webstorm、Text 、Notepad++` 等任意html编辑软件进行运行及修改编辑等操作) HTML静态网页设计作业,采用DIV+CSS布局,共有多个页面,使用CSS排版比较丰富,色彩鲜明有活力,顶部导航及底部 区域背景色为100%宽度。都是给学生定制的都符合学生考试期末作业的水平,有的有js,有的视频+音乐+flash的等 元素的插入。 【查看更多源码地址】:https://blog.csdn.net/VX_WJ88950106?type=blog
1
python实现基于改进的差分进化算法求解柔性作业车间调度问题源码+项目说明.7z 问题规模以(工件J*工序P*机器M)表示,例如J20P10M10表示共有20个工件,每个工件有10个工序,总共有10个加工机器可供选择。data文件夹中的文件表示程序所用的数据,其中data_first文件的问题规模是J10P5M6,data_second文件的问题规模是J20P10M10,data_third文件的问题规模是J20P20M15。对于其中数据的解释:横向表示工序,纵向表示机器,每个数值表示机器加工工序的耗时,工序和机器都是按顺序排列的。以data_first.txt文件为例,前五行分别表示第一个工件的5个工序分别在6台机器上加工的时间,第5-10行表示第二个工件的5个工序分别在6台机器上加工的时间,以此类推。 关于编码,本项目采用的是同类问题常用的编码方式,参考论文“基于改进遗传算法的柔性作业车间调度问题研究”,与该论文所述的编码方式不同的是,本项目的编码中第一段为工序编码,第二段为机器编码。
基于NXP iMX8QM 汽车仪表+车载娱乐双作业系统解决方案
2022-12-13 23:29:59 2.54MB 基于 nxp iMX8QM 汽车仪表
1
python实现采用Alpha-Beta剪枝搜索实现黑白棋AI源码(人工智能期末作业).zip 黑白棋 实验要求: 使用 『最小最大搜索』、『Alpha-Beta 剪枝搜索』 或 『蒙特卡洛树搜索算法』 实现 miniAlphaGo for Reversi(三种算法择一即可)。 使用 Python 语言。 算法部分需要自己实现,不要使用现成的包、工具或者接口。 Result: 实现 AIPlayer 类,采用 Alpha-Beta 剪枝搜索实现黑白棋 AI
基于Pytorch框架自定义7层卷积神经网络模型实现垃圾分类系统源码+数据集+项目说明(人工智能期末作业).zip 垃圾分类 实验要求: 利用深度学习模型完成垃圾分类 图片数据集来源:https://momodel.cn/explore/5d411ace1afd9427c236eab5?type=dataset Result: 使用 PyTorch 自定义 7 层卷积神经网络加 2 层全连接层的分类模型
本资源为电力系统可靠性课程编程大作业,通过构建停运表形成发电系统及互联系统的裕度表,并计算可靠性指标。关于程序的说明文档详见个人博客《【课程作业】发电及互联系统可靠性计算程序说明文档》。
2022-12-13 19:00:01 1.27MB 电力系统 MATLAB 可靠性
1