吴恩达机器学习ex6Support Vector Machines数据集
1
基于一个公开数据集和一个BCI竞赛数据集,提供一个SVM-CSP运动想象二分类demo,详见https://www.xxy.ink/learn/bci/2.html。包含脑电CSP特征提取,运动想象支持向量机分类,bbci和biosig工具箱等。
1
提出一种新型的基于光滑Ramp损失函数的健壮支持向量机,能够有效抑制孤立点对泛化性能的影响,并采用CCCP将它的非凸优化目标函数转换成连续、二次可微的凸优化。在此基础上,给出训练健壮支持向量机的一种Newton型算法并且分析了算法的收敛性质。实验结果表明,提出的健壮支持向量机对孤立点不敏感,在各种数据集上均获得了比传统的SVMlight算法和Newton-Primal算法更优的泛化能力。
1
根据《Pattern Recognition and Machine Learning》这本书的第7章(稀疏核机)的7.1节,介绍了样本数据线性可分的线性可分支持向量机和样本数据重叠的线性支持向量机,以及支持向量回归。详细介绍了公式的推导过程,以及SMO算法。
2021-04-02 15:46:03 719KB SVM和SVR
1
MATLAB源码集锦-基于SVM支持向量机算法的降水量预测模型代码
2021-04-02 11:21:05 296KB SVM支持向量机 SVM 降水量预测 MATLAB
支持向量机-SVM.pdf
2021-04-02 09:16:14 2.08MB 机器学习
1
个人感觉挺好的支持向量机ppt,介绍的挺容易懂的
2021-04-01 20:54:34 2.24MB 支持向量机
1
适合初学者学习的SVM、SVR工具箱 该工具箱包括了二种分类,二种回归,以及一种一类支持向量机算法 (1) Main_SVC_C.m --- C_SVC二类分类算法 (2) Main_SVC_Nu.m --- Nu_SVC二类分类算法 (3) Main_SVM_One_Class.m --- One-Class支持向量机 (4) Main_SVR_Epsilon.m --- Epsilon_SVR回归算法 (5) Main_SVR_Nu.m --- Nu_SVR回归算法 另附: (1) 目录下以Main_开头的文件即是主程序文件,直接按快捷键F5运行即可 (2) 工具箱中所有程序均在Matlab6.5环境中调试通过,不能保证在Matlab其它版本正确运行
2021-03-30 09:18:16 229KB svm svr svc
文本相似度计算一直是自然语言处理领域研究中的一个基础问题。而文本语义相似度计算则是在文本相似度计算基础上增加了语义分析,在语义层面对文本相似度作进一步的分析研究,具有广阔的应用背景。本文针对句子级别的文本语义相似度计算问题,提出了应用结构化特征和神经网络的方法,并将该方法应用到一个实际的问答系统中,取得了良好的效果。本文深入研究文本语义相似度计算方法,主要研究内容如下:(1)基于结构化表示的文本语义相似度计算方法针对句子级文本相似度计算方法中平面特征表征性弱的问题,本文提出了应用结构化特征来表示句子级文本的句法、语义等信息。在浅层句法树和依存关系树的基础上,获得了基于短语的浅层句法树PST(Phrase-based Shallow Tree)和基于短语的依存树PDT(Phrase-based Dependency Tree)的结构化特征,并与平面特征向量相结合,使用支持向量回归模型进行文本语义相似度计算。实验结果表明,加入PST或PDT特征可以分别使皮尔逊相关系数比基准系统提高0.054和0.041。(2)基于Tree-LSTM的文本语义相似度计算方法为了进一步提高长文本语义相似度计算性能,本文提出应用深度学习方法对长文本进行语义相似度计算研究。首先,设计了适合神经网络模型的新的基于短语的浅层句法树NPST(New PST)和新的基于短语的依存树NPDT(New PDT)结构化。
1
基于支持向量机的离心泵故障诊断方法研究 简要论述了支持向量机的大批量,介绍了几种支持向量机的多类分类算法,最后将它们应用于离心泵的故障诊断进行比较,获得了令人满意的效果。
1