这段MATLAB代码实现了三维空间中的比例导引算法,旨在模拟一个跟踪器对移动目标的追踪过程。代码通过动态计算和更新跟踪器的位置,使其能够有效地接近指定目标。 ## 主要功能 1. **初始化**: - 设置时间步长(`tt`)和比例缩放因子(`sm` 和 `st`)以控制跟踪器与目标之间的动态关系。 - 初始化目标的位置和速度信息。 2. **状态转移矩阵**: - 使用状态转移矩阵(`F`)描述目标的位置和速度变化,模拟目标的运动轨迹。 3. **主循环**: - 在每个时间步内,更新目标位置,根据设定的S型轨迹,计算当前位置与目标位置之间的距离。 - 计算与目标位置相关的角度和变化量,并在每个时间步更新跟踪器的角度、角速度和位置。 - 通过三角函数和几何关系,确保跟踪器朝着目标移动。 4. **结束条件**: - 当跟踪器与目标之间的距离小于设定阈值时,循环将终止,表示成功追踪目标。 5. **结果可视化**: - 最后,代码通过三维图形展示了跟踪器和目标的运动轨迹,使得用户可以直观地观察到比例导引的效果。
2025-04-14 15:20:58 4KB matlab 比例导引
1
基于YOLOv8与DEEPSort技术的多目标检测跟踪系统:包含56组visdrone测试视频、pyqt5界面设计与详细环境部署及算法原理介绍,基于YOLOv8和DEEPSort的多目标检测跟踪系统:深入探索环境部署与算法原理,附带56组visdrone测试视频的界面设计实战教程。,五、基于YOLOv8和DEEPSort的多目标检测跟踪系统 1.带56组测试视频,使用visdrone数据集。 2.pyqt5设计的界面。 3.提供详细的环境部署说明和算法原理介绍。 ,基于YOLOv8;DEEPSort多目标检测跟踪系统;56组测试视频;visdrone数据集;pyqt5界面设计;环境部署说明;算法原理介绍,基于YOLOv8和DEEPSort的56组视频多目标检测跟踪系统
2025-04-13 14:25:06 3.27MB
1
安全帽检测数据集是针对工业安全领域的一个重要资源,它主要包含了5000张PNG格式的图片,这些图片经过精心处理,具有416×416像素的分辨率,适用于深度学习中的目标检测任务。这个数据集特别设计用于YOLO(You Only Look Once)算法,这是一种高效且实时的目标检测框架。 YOLO是一种基于深度学习的一阶段目标检测方法,由Joseph Redmon等人在2016年提出。它的核心思想是在单个神经网络中同时进行类别预测和边界框定位,这使得YOLO在速度和精度之间取得了良好的平衡。对于工业安全场景,如建筑工地或矿山,确保工人佩戴安全帽至关重要。因此,利用这样的数据集训练YOLO模型,可以实现自动检测工人是否正确佩戴安全帽,从而提高工作场所的安全性。 数据集的组织结构通常包括训练集和测试集。训练集用于训练模型,而测试集则用来评估模型在未见过的数据上的性能。在这个案例中,这5000张图像可能已经被划分成这两个部分,以确保模型在训练过程中的泛化能力。"images"文件夹可能包含了所有图片,而"labels"文件夹则可能存储了对应的标注信息,每张图片的标注通常是一个文本文件,列出了图片中安全帽的位置(以边界框的形式表示)和类别信息。 在训练过程中,首先需要将这些PNG图像加载到YOLO模型中,通过反向传播优化模型参数,以最小化预测边界框与实际边界框之间的差距。数据增强技术,如随机翻转、缩放和旋转,常被用来扩充数据集,防止过拟合。训练完成后,模型会在测试集上进行验证,评估指标通常包括平均精度(mAP)、召回率和精确率等。 在深度学习模型训练中,选择合适的损失函数也很关键。对于YOLO,通常使用多边形 IoU(Intersection over Union)损失函数来衡量预测框和真实框的重叠程度。此外,还要考虑分类错误,这可能涉及二元交叉熵损失。 为了部署这个模型,我们需要将其转化为能够在实际环境中运行的轻量级版本,比如YOLOv3-tiny或者更小的模型架构。这可以通过模型剪枝、量化和蒸馏等技术实现。将模型集成到移动设备或监控系统中,可以实时监测工人是否佩戴安全帽,一旦发现违规行为,立即报警或记录,从而提升安全管理水平。 总结来说,这个安全帽检测数据集为开发一个高效、实时的安全帽检测系统提供了基础。通过使用YOLO框架,结合数据预处理、训练、验证和优化过程,我们可以构建出一个强大的目标检测模型,有效保障工人的生命安全。
2025-04-12 15:51:15 320.8MB yolo 目标检测 深度学习 数据集
1
基于深度学习的YOLOv安全帽佩戴实时检测与目标追踪,可视化界面展示,yolov安全帽佩戴检测,目标检测,附带可视化界面。 ,核心关键词:yolov安全帽佩戴检测; 目标检测; 可视化界面。,"YoloV安全帽佩戴智能检测系统:目标检测与可视化界面" 深度学习技术近年来在目标检测领域取得了显著的进步,特别是在特定场景下的应用,如安全帽佩戴检测。YOLOv(You Only Look Once version)是一种流行的实时目标检测算法,其快速性和准确性在多种实际场景中得到了验证。本文档聚焦于基于YOLOv的安全帽佩戴实时检测技术,该技术不仅能够实现对佩戴安全帽的工人的实时监控,还能够对检测结果进行可视化展示,从而提高作业现场的安全管理水平。 YOLOv算法通过将目标检测任务转化为一个单一的回归问题,极大地提升了检测速度,使其适用于对实时性要求较高的场景。安全帽佩戴检测利用YOLOv算法,通过训练特定的数据集,使其能够识别出是否佩戴了安全帽,这在施工、矿场等高风险作业环境中尤为重要。通过实时监测,系统能够在第一时间内发现未正确佩戴安全帽的工人,从而及时提醒或采取措施,预防事故的发生。 可视化界面作为该系统的重要组成部分,提供了直观的操作和查看方式。它不仅能够实时展示检测结果,还可以通过图表、视频等形式,让用户更直观地了解现场工人的安全状况。在实际应用中,可视化界面的设计要考虑到易用性、实时性和准确性,确保信息传达的有效性。 文档中提到的“剪枝”技术在深度学习模型优化中扮演着重要角色。剪枝是一种模型压缩技术,目的是去除神经网络中不必要的参数或层,以此减少模型的大小和计算复杂度,同时尽量保留模型的性能。在安全帽佩戴检测系统中,使用剪枝技术可以使得模型更加轻量化,提高运行速度,减少资源消耗,从而更适用于硬件资源有限的现场环境。 此外,文档中还包含了一系列的文件名称,这些文件可能是文章、说明文档或相关的数据资料。其中“近年来随着人工智能技术的飞速发展目标检测已成.doc”和“安全帽佩戴检测是一种基于目标检测算法的技.doc”可能是对技术背景和方法的介绍;而“文章标题基于的安全帽佩戴检测实现目标检测与可视化.html”和“安全帽佩戴检测目标检测附带可视化界面.html”则可能是对系统功能和界面设计的说明。 安全帽佩戴检测系统的开发和应用,对于提升工作场所的安全监管有着重要意义。通过利用先进的深度学习技术和高效的模型优化方法,可以构建出既准确又高效的智能安全监控系统,为安全生产提供强有力的技术支持。未来,随着技术的不断进步和算法的优化,这类系统有望在更多行业和领域得到广泛应用,进一步提高人类生产活动的安全水平。
2025-04-12 10:29:24 1.22MB
1
YOLOv8-obb旋转框目标检测技术结合了YOLO(You Only Look Once)模型和旋转边界框(Oriented Bounding Box, OBB)检测算法,是一种用于图像中物体检测的先进方法。它能够识别和定位图像中的目标,并为每个目标绘制一个旋转的边界框,以此来更准确地描述目标在图像中的位置和姿态。 在本项目中,开发者提供了基于YOLOv8架构的旋转框目标检测模型,并通过ONNX Runtime实现高效部署。ONNX Runtime是微软开发的一个跨平台机器学习运行时引擎,支持ONNX(Open Neural Network Exchange)模型格式,它能够加速AI模型在不同平台上的部署和推理过程。 项目提供的完整代码包含了模型转换、加载以及推理的全部步骤。通过指定的转换工具将训练好的YOLOv8-obb模型导出为ONNX格式,这一步是必要的,因为ONNX Runtime需要ONNX格式的模型来进行推理。然后,在代码中加载这个转换后的模型,初始化推理环境,并对输入图像进行预处理。 推理阶段,输入图像经过预处理后送入模型中,模型输出包括目标的类别标签、旋转边界框的坐标和相应的置信度分数。这些输出数据后续需要经过后处理步骤来过滤掉低置信度的检测结果,并将旋转框转换为可视化的格式,以便在图像上绘制出精确的目标位置。 整个过程利用了ONNX Runtime优秀的性能,使得目标检测的实时性得到了提升。这对于需要实时处理视频流的场景(如自动驾驶、安防监控等)尤为关键。此外,代码可能还包含了一些优化策略,例如模型量化、加速库的使用等,这些都是提高性能的有效手段。 值得注意的是,虽然YOLOv8-obb结合了旋转框检测技术,但在实际部署时仍然需要注意模型的准确性和鲁棒性,特别是在面对图像中的遮挡、光照变化以及目标变形等复杂情况时。 代码的具体实现细节包括模型转换的参数设置、图像预处理的方法、推理过程中的内存和计算资源管理、结果的后处理和可视化等。开发者需要针对具体的应用场景进行调优,以达到最佳的检测效果和性能平衡。 此外,代码库可能还包括了示例脚本,以便用户可以快速理解和上手,这些示例可能涵盖了模型的基本使用、特定场景下的定制化修改以及与其他系统集成的方法等。 为了确保项目的顺利实施,可能还包括了依赖项的管理,比如指定ONNX Runtime的版本、其他相关深度学习库的版本等,确保环境的一致性和代码的可复现性。 这个项目为开发者提供了一个能够快速部署和应用YOLOv8-obb旋转框目标检测模型的完整方案,适用于各种需要高效准确目标检测的场合。通过这种方式,开发者能够节省部署时间,集中精力在模型的优化和业务逻辑的开发上。
2025-04-11 17:04:06 8KB yolo onnxruntime
1
航空兵 AeroPy是用于计算空气动力学特性的库。 该库的主要功能是XFOIL的Python接口。 该库的主要目的是能够通过Python迭代地使用XFOIL,总共共有4行(大多数使用一行)。 通过此接口,可以与其他软件(Abaqus,Ansys等)耦合,并且可以进行迭代过程(优化,设计敏感性)。 有关详细说明,请查看文档和教程。 有关完整的文档和教程,请 安装 通过GitHub克隆 在Aeropy目录中打开命令行 运行“ pip install -e”。 依存关系 子过程 操作系统 麻木 数学 闭嘴 约会时间 时间 科学的 matplotlib 泡菜 mpl_toolkits 多处理 stl 警告 paraview(如果在Paraview中运行)
2025-04-11 14:44:04 34.17MB Python
1
多目标粒子群算法MOPSO,Matlab实现 测试函数包括ZDT、DTLZ、WFG、CF、UF和MMF等,另外附有一个工程应用案例;评价指标包括超体积度量值HV、反向迭代距离IGD、迭代距离GD和空间评价SP等 ,多目标粒子群算法MOPSO的Matlab实现与综合测试:涵盖ZDT、DTLZ、WFG等多类测试函数及MMF与CF,并附以工程应用案例的评估与分析,采用超体积HV、反向迭代IGD及迭代空间等评方法,基于多目标粒子群算法MOPSO的Matlab实践:涵盖ZDT、DTLZ、WFG等多类测试函数与MMF案例,以及超体积度量HV等综合评指标体系的应用研究,MOPSO; Matlab实现; 测试函数: ZDT; DTLZ; WFG; CF; UF; MMF; 评价指标: HV; IGD; GD; SP,多目标粒子群算法MOPSO:Matlab应用及性能评价
2025-04-09 17:46:58 2.04MB
1
深度学习驱动的复杂环境下人员异常行为精准检测系统:多目标检测跟踪实现摔倒、越线、徘徊、拥挤检测 - 基于YoloV3+DeepSort在TensorFlow框架下的应用,基于深度学习的人员异常行为检测系统:多目标检测与跟踪实现摔倒、越线、徘徊及拥挤检测——Yolov3+DeepSort在TensorFlow框架下的应用。,人员异常行为检测 基于深度学习的人员异常行为检测,多目标检测+多目标跟踪实现人员摔倒检测,越线检测,徘徊检测,拥挤检测,yolov3+deepsort,tensorflow ,核心关键词:深度学习;人员异常行为检测;多目标检测;多目标跟踪;摔倒检测;越线检测;徘徊检测;拥挤检测;Yolov3;DeepSort;TensorFlow;,深度学习多目标检测跟踪:摔倒、越线、徘徊、拥挤行为检测
2025-04-09 00:49:24 6.48MB csrf
1
Citypersons数据集(标签已转换成yolo格式,数据集太大无法上传),放在百度网盘。
2025-04-08 02:40:22 1.03MB 数据集 目标检测
1
yolov5吸烟检测,pyqt5,目标检测,深度学习,网络优化,目标检测接单,yolov5,yolov7,yolov8 语言:python 环境:pycharm,anaconda 功能:有训练结果,可添加继电器或者文字报警,可统计数量,可统计数量,可网络优化
2025-04-07 19:33:49 480.26MB 数据集 目标检测
1