介绍了上海电网概况,分析了网供负荷特性,以及近期影响上海地区负荷的因素,并使用不同的预测方法给出了长期负荷和用电量的方案.最后针对上海地区的特点,提出了提高负荷预测准确性和应对本地区电网严峻形势的对策和建议.
2026-01-30 09:48:11 277KB 自然科学 论文
1
人工智能教育在小学的应用和前景展望(1).pptx
2026-01-29 20:10:15 4.99MB
1
CVNetica——一个使用 Netica 在贝叶斯网络上执行交叉验证的 Python 软件包 1.0 版 --- 2014 年 7 月 17 日 文档: Fienen, MN 和 Plant, NG,2015 年,使用 Python 驱动 Netica 的交叉验证包。 环境建模和软件 63 (14–23) doi:10.1016/j.envsoft.2014.09.007。 一般用途 驱动程序是 CVDDriver.py 必须创建一个 xml 配置文件来提供有关特定项目的信息。 包括两个示例 XML 文件。 联系 Mike Fienen < mnfienen> 免责声明和通知 有关完整的使用、版权和分发信息,请参阅 USGS 软件用户权利通知 ( )。 USGS 不提供任何明示或暗示的保证,即所提供软件的正确性或任何用途的适用性。 该
2026-01-29 20:00:13 38KB Python
1
内容概要:本文探讨了COMSOL多物理场仿真软件在压电-热释电效应研究的应用,重点聚焦于压电薄膜三维模型的构建与纳米发电过程的模拟。通过建立精确的几何与材料模型,模拟其在机械力和温度变化下的电学响应,并采用文章复现的方法验证仿真结果的准确性,进而优化模型参数。 适合人群:从事压电材料、能源收集、传感器技术研究的科研人员,具备一定COMSOL使用经验的研究生或工程师。 使用场景及目标:①构建压电-热释电耦合效应的三维仿真模型;②实现纳米发电机工作过程的数值模拟;③通过复现实验文献验证模型有效性,提升仿真实践能力。 阅读建议:在学习过程应结合具体文献案例,严格按照实验条件设置边界与材料参数,关注多物理场耦合设置细节,确保仿真结果的可靠性和可重复性。
2026-01-29 17:17:35 318KB COMSOL
1
QT库是Qt公司开发的一款强大的跨平台应用程序开发框架,尤其在图形用户界面和网络通信方面表现出色。在QT实现TCP通信,可以帮助开发者构建稳定、高效的数据传输应用。本篇文章将详细讲解QTTCP通信的流程,并提供一个完整的代码示例。 我们需要了解TCP(Transmission Control Protocol)是一种面向连接的、可靠的、基于字节流的传输层通信协议。在QT,我们可以使用QTcpServer和QTcpSocket这两个类来实现TCP服务器和客户端的通信。 1. **创建TCP服务器** - 我们需要创建一个QTcpServer对象,并在其上绑定监听端口。这通常在主线程或单独的线程完成。 - 通过调用`QTcpServer::listen()`方法启动监听,传入适当的QHostAddress和端口号。 - 当有新的连接请求时,QTcpServer会发出`newConnection()`信号,我们可以通过连接这个信号并处理新连接。 2. **处理连接请求** - 在服务器端,当接收到新的连接请求时,我们需要接受这个连接。通过调用`QTcpServer::nextPendingConnection()`方法获取到一个新的QTcpSocket对象,代表了与客户端的连接。 - 接收数据可以使用QTcpSocket的`read()`或`readLine()`方法,发送数据则使用`write()`方法。 3. **创建TCP客户端** - 客户端需要创建一个QTcpSocket对象,然后使用`connectToHost()`方法尝试连接到服务器,传入服务器的IP地址和端口号。 - 连接成功后,同样可以通过`write()`方法发送数据,`read()`或`readLine()`方法接收数据。 4. **错误处理和信号槽** - 在TCP通信,错误处理至关重要。QTcpServer和QTcpSocket都提供了各种错误信号,如`error(QAbstractSocket::SocketError)`,可以捕获并处理这些信号。 - 为了响应事件,如连接建立、数据接收和发送,我们可以使用QT的信号槽机制,将相应的函数连接到这些信号。 5. **完整代码示例** 以下是一个简单的TCP服务器和客户端的QT代码示例: ```cpp // TCP服务器 class Server : public QObject { Q_OBJECT public: explicit Server(QObject *parent = nullptr) : server(parent) {} void startServer(int port) { server.listen(QHostAddress::Any, port); } private slots: void newConnection() { auto socket = server.nextPendingConnection(); connect(socket, &QTcpSocket::readyRead, this, [socket] { QByteArray data = socket->readAll(); // 处理接收到的数据 ... socket->write("数据已接收"); }); } signals: void started(); private: QTcpServer server; }; // TCP客户端 class Client : public QObject { Q_OBJECT public: explicit Client(QObject *parent = nullptr) : socket(parent) {} void connectToServer(const QString &host, int port) { socket.connectToHost(host, port); if (socket.waitForConnected()) { // 连接成功,发送数据 socket.write("你好,服务器!"); connect(socket, &QTcpSocket::readyRead, this, [this] { QByteArray data = socket.readAll(); // 处理接收到的数据 ... }); } else { // 处理连接失败 ... } } signals: void connected(); private: QTcpSocket socket; }; ``` 这个例子展示了如何在QT使用TCP进行通信的基本流程。服务器监听特定端口,当有新连接时,读取客户端发送的数据并回应。客户端连接到服务器,发送消息并等待服务器的响应。实际应用,你需要根据具体需求对数据处理和错误处理部分进行扩展和完善。 QT为TCP通信提供了一套简洁、高效的API,使得开发者能够轻松地在不同平台上实现可靠的数据传输功能。通过理解并掌握上述知识,你可以创建自己的TCP服务和客户端应用,实现数据的高效交互。
2026-01-29 17:02:16 9KB
1
我们研究超外围重离子<math> J / ψ </ math>介子的独家光产生 彩色偶极子方法发生碰撞。 我们首先针对包含在内的<math> F 2 </ math>数据拟合的多个偶极子截面进行测试, 在自由核子上产生<math> J / ψ </ math>。 然后,我们使用Glauber-Gribov理论的彩色偶极子公式
2026-01-29 12:30:27 554KB Open Access
1
考虑到两个质子,两个子和质子-子对之间的空间相关性差异,我们扩展了用于在原子核生成全局构型的蒙特卡洛算法,以包括质子和子在重核的不同空间分布。 我们生成了富含子的Ca48和Pb208核的构型,这些构型可用于通用的高能A(e,e'p),pA和A-A事件发生器。 作为铅配置的应用,我们开发了一种用于CERN大型强子对撞机上质子-重原子核碰撞的算法,用于最终状态且在p-p和p-n散射截面不同的通道具有硬相互作用。 在Glauber算法的颜色波动扩展考虑了软相互作用,同时考虑了软和硬PN碰撞固有的不同横向几何形状。 我们使用新的事件生成器来测试Paukkunen [Phys。 来吧 B 745,73(2015)],由于存在子皮,p-Pb碰撞的W±生产率之比应明显偏离外围碰撞的包含值。 我们定性地确认了对Paukkunen的期望,尽管对于一个现实的心性触发因素,我们发现该影响比原始估计值小2倍。
2026-01-29 12:02:33 608KB Open Access
1
ALICE检测器在5.02 TeV的核子-核子质心心的p-Pb碰撞,通过ALICE检测器测量了未识别的带电触发器和相关粒子之间的两粒子角相关性。 检查横向动量范围0.7 <pT,assoc <pT,trig <5.0 GeV / c,以包括由低动量传递散射引起的射流引起的相关性(微型射流)。 在假快速范围|η| <0.9获得了表示为每个触发粒子的相关产量的相关性。 从近侧短距离和远侧相关性减去在高多重性p-Pb碰撞观察到的近侧远距离伪快速相关性,以去除非喷射状分量。 发现喷射状峰的产量随事件多重性不变,但具有低多重性的事件除外。 这种不变性与通过多个parton-parton散射的非相干碎片而产生的粒子是一致的,而与先前观察到的脊结构有关的产量与射流无关。 发现不相关的粒子产生源的数量随多重性线性增加,这表明即使在最高多重性p–Pb碰撞,多部分相互作用的数量也没有饱和。 此外,该数量仅在间多重性区域内标度,该数量是通过Glauber Monte-Carlo模拟估算的二元核子-核子碰撞数。
2026-01-29 11:24:06 848KB Open Access
1
考虑到质子具有半径为$ \ sim 0.87 $$ ~~ 0.87 fm的外介子云和半径为$ \ sim 0.44 $$ ~~ 0.44 fm的内核,其三个夸克的价态被约束并且在光学的框架内 Glauber的极限逼近,质子-质子的弹性散射微分截面,总截面,正向方向上弹性散射幅度的实部与虚部之比,LHC能量的总弹性和非弹性截面的计算公式为 $ \ sqrt {s} = 7,\; 8,\; 13 $$ s = 7,8,13 TeV。 包括三夸克力。 与TOTEM合作的最后一次测量的LHC能量7、8和13 TeV的实验数据获得了很好的一致性。 仅对于微分横截面,对于$$ q ^ {2}> 1 \;(\ mathrm {GeV} / c)^ {2} $$ q2> 1(GeV / c)2会得出分歧。 需要Glauber多项式。 我们试图证实两夸克力半径和三夸克力半径以及胶体定量能量的结果,这些结果是在ISR能量之前获得的。
2026-01-29 10:48:58 845KB Open Access
1
大核的密度分布通常以伍兹-撒克逊分布为特征,其半径为R0,表皮深度为a。 然后引入变形参数β,以使用球谐函数R0(1 +β2Y20+β4Y40)的展开来描述非球核。 但是,当原子核为非球形时,R0和通过电子散射实验推断出的,在所有核取向上积分的结果都不能直接用作Woods-Saxon分布的参数。 另外,通常从减小的四极电子跃迁几率B(E2)↑得到的β2值与球形谐波膨胀使用的β2值不直接相关。 B(E2)↑与本征四极矩Q0的关系比与β2的关系更准确。 但是,可以为给定的β2计算Q0,然后从Q0导出B(E2)↑。 在本文,我们计算并制表了R0,a和β2值,这些值在Woods-Saxon分布使用时,将得出与电子散射数据一致的结果。 然后,我们介绍使用新参数和旧参数计算的二次谐波和三次谐波参与者偏心率(ε2和ε3)。 我们证明ε3对a尤其敏感,并指出使用a的不正确值对于从重离子碰撞产生的QGP提取粘度与熵之比(η/ s)具有重要意义。
2026-01-29 10:13:28 397KB Open Access
1