在当今信息技术飞速发展的时代,语音识别技术已经成为人机交互领域的一个研究热点。特别是对于中文语音识别技术,随着人工智能技术的进步,尤其是神经网络的应用,中文语音识别的准确性和效率都有了显著提升。DeepASR项目正是在这样的背景下诞生的一个创新性成果。 DeepASR是一个基于神经网络的端到端中文语音识别系统。它将语音信号的处理和识别结合在一个统一的框架中,避免了传统语音识别流程中的多个独立模块,如特征提取、声学模型和语言模型的串联使用。这种端到端的方法简化了语音识别的过程,同时也使得系统能够更直接地从原始语音数据中学习到识别所需的信息。 该项目采用的神经网络模型通常包括深度神经网络(DNN)、卷积神经网络(CNN)和循环神经网络(RNN),以及它们的变种如长短时记忆网络(LSTM)和门控循环单元(GRU)。这些模型能够从大量的语音数据中提取复杂的特征,并对声音信号中的时间序列信息进行有效的捕捉和建模。 DeepASR项目的开发涉及到多个技术环节。首先是数据预处理,包括音频的采样、分帧、归一化等操作,以及必要的特征提取。这些步骤保证了后续模型训练的输入数据质量。接下来是模型的构建和训练,这个过程通常需要大量的标注数据和强大的计算资源。模型训练完成后,还需要进行评估和优化,以提高系统的识别准确率和鲁棒性。 在实际应用中,DeepASR项目可以集成到各种设备和平台上,比如智能手机、智能音箱、车载系统等。用户可以通过语音与设备进行自然的对话,执行各种命令,从而实现更加便捷和自然的人机交互体验。 DeepASR项目的成功实施,不仅有助于推动中文语音识别技术的发展,还可能在语音助手、语音翻译、语音控制等多个领域产生深远影响。通过该项目的实践,人们可以更深入地理解深度学习在语音识别中的应用,为未来的研究和应用提供了宝贵的参考和实践经验。 此外,随着深度学习技术的不断进步和计算资源的日益丰富,DeepASR项目未来有望通过使用更加复杂的模型结构、更先进的优化算法以及更大规模的训练数据,进一步提升识别性能,实现更多场景的适用性。同时,项目团队也需要持续关注模型的效率和鲁棒性,确保技术的实用性和商业化前景。 DeepASR项目作为一个基于神经网络的端到端中文语音识别项目,不仅在技术层面展现了深度学习的强大能力,也在应用层面为用户提供了一种全新的交互方式,有望在未来的信息技术发展中扮演重要角色。
2025-10-01 22:44:38 63.03MB
1
包含声学模型和语言模型两个部分组成,两个模型都是基于神经网络。 该项目实现了GRU-CTC中文语音识别声音模型,所有代码都在gru_ctc_am.py中,包括: 增加了基于科大讯飞DFCNN的CNN-CTC结构的中文语音识别模型cnn_ctc_am.py,与GRU相比,对网络结构进行了稍加改造。 完全使用DFCNN框架搭建声学模型,稍加改动,将部分卷积层改为inception,使用时频图作为输入,cnn_with_fbank.py。 新增使用pluse版数据集的模型,cnn_with_full.py,建议直接训练这个模型。 语言模型 - language_model文件夹下 新增基于CBHG结构的语言模型language_model\CBHG_lm.py,该模型之前用于谷歌声音合成,移植到该项目中作为基于神经网络的语言模型。
2024-05-07 18:47:06 34.52MB 神经网络 深度学习 语音识别
1
500条WAV格式的中文语音数据集,可用于中文语音识别模型的测试集,好的一批
2023-08-14 10:02:25 45.69MB python 数据集 nlp 深度学习
1
资源包含文件:设计报告word+源码及数据 该系统实现了基于深度框架的语音识别中的声学模型和语言模型建模,其中声学模型包括 CNN-CTC、GRU-CTC、CNN-RNN-CTC,语言模型包含 transformer、CBHG,数据集包含 stc、primewords、Aishell、thchs30 四个数据集。 声学模型采用 CTC 进行建模,采用 CNN-CTC、GRU-CTC、FSMN 等模型 model_speech,采用 keras 作为编写框架。 详细介绍参考:https://biyezuopin.blog.csdn.net/article/details/122512802?spm=1001.2014.3001.5502
该系统实现了基于深度框架的语音识别中的声学模型和语言模型建模,其中声学模型包括CNN-CTC、GRU-CTC、CNN-RNN-CTC,语言模型包含transformer、CBHG,数据集包含stc、primewords、Aishell、thchs30四个数据集。 本项目现已训练一个迷你的语音识别系统,将项目下载到本地上,下载 thchs 数据集并解压至 data,运行 test.py,不出意外能够进行识别,结果如下: the 0 th example. 文本结果: lv4 shi4 yang2 chun1 yan1 jing3 da4 kuai4 wen2 zhang1 de di3 se4 si4 yue4 de lin2 luan2 geng4 shi4 lv4 de2 xian1 huo2 xiu4 mei4 shi1 yi4 ang4 ran2 原文结果: lv4 shi4 yang2 chun1 yan1 jing3 da4 kuai4 wen2 zhang1 de di3 se4 si4 yue4 de lin2 luan2 geng4 shi4 lv4 de2 xi
2023-03-02 18:14:02 108.36MB 语音识别 深度学习 语音 识别
1
MASR中文语音识别模型 aishell (179小时)
2022-07-05 19:01:05 455.96MB MASR中文语音识别模型
1
Python基于深度学习的中文语音识别系统源码.zip
2022-05-25 15:09:01 5.82MB python 源码软件 深度学习 语音识别
MASR中文语音识别模型(数据集:Librispeech),源码地址:https://github.com/yeyupiaoling/MASR
2022-04-02 09:42:51 455.96MB 语音识别 人工智能 Librispeech pytorch
1
基于pytorch的语音识别框架SpeechBrain的预训练权重得来,支持CPU和GPU两种模式,可实现快速中文语音识别
2022-01-16 21:05:35 112.33MB SpeechBrain pyTorch python 语音识别
1