在当今的数据分析领域,文本分析和情感分析是两大重要分支,它们在市场分析、社交媒体监控、新闻报道以及科研工作中扮演着关键角色。随着自然语言处理技术的不断进步,LDA(隐含狄利克雷分布)主题模型和Wordvec(Word Embeddings)已经被广泛应用于提取文本数据中的主题和语义信息。LDA是一种文档主题生成模型,它可以将文档集合中的每篇文档视为多个主题的混合,每个主题又是由多个词构成的混合。而Wordvec是一种词嵌入模型,它能够将词语表示为稠密的向量形式,从而捕捉词语之间的语义相似性。 桑基图(Sankey Diagram)是一种特定类型的流程图,它通过流量的大小显示了数据流的量值,非常适合用来展示数据在不同阶段的变化或不同数据流之间的关系。在文本分析领域,桑基图可以用于可视化主题模型中的主题分布和转换,帮助研究者和工程师直观地理解数据随时间或条件的演变。 本次提供的资源“lda主题模型+wordvec代码+桑基图演化+参考论文”结合了上述这些先进的文本分析工具和技术,并且附带了详细的参考论文,对于想要深入学习和掌握这些技术的读者来说,是一份宝贵的资料。这份资源不仅包括了完整的代码实现,还包含了如何通过实际案例应用这些模型的详细说明。特别地,资源中提到可以为理解能力较弱的读者提供一对一的讲解服务,这无疑为初学者搭建了一座进入文本分析领域的桥梁。 对于软件工程师、数据分析师、科研人员以及计算机科学专业的学生而言,这份资源将成为他们完成毕业设计、科研项目或工作中的实际需求的有力支持。通过熟练掌握LDA主题模型和Wordvec,以及桑基图的应用,他们能够更准确地进行文本挖掘,提取有价值的信息,形成深入的洞察,从而在各自的工作和研究领域中取得更好的成绩。 此外,该资源还涉及了情感分析,这是文本分析的一个重要分支,它关注的是从文本中识别和提取情绪倾向(如正面、负面、中性等),这在品牌管理、公共关系和政治选举等领域尤为重要。通过情感分析,相关领域的决策者可以更好地理解公众对特定话题或品牌的态度和情感,进而做出更加精准的市场策略调整。 “lda主题模型+wordvec代码+桑基图演化+参考论文”是一份综合性极强的学习资料,它不仅为技术爱好者提供了一个学习先进文本分析技术的平台,也为专业人士提供了解决实际问题的有效工具。对于那些希望在自然语言处理领域取得进步的人来说,这份资源无疑是他们学习和研究的宝贵资产。
2025-07-03 14:20:20 100.12MB 毕业设计
1
词嵌入的连续空间主题模型 描述 实现了带有单词嵌入的连续空间主题模型,这是Daichi Mochihashi的增强模型。 环境 C ++ 14+ lang ++ 9.0 提升1.71.0 glog 0.4.0 gflag 2.2.2 boost-python3 python3 用法 准备基于文档的语料库并将其分为训练数据集和验证数据集 用MCMC训练ETM。 $ make $ ./cstm -ndim_d=20 -ignore_word_count=4 -epoch=100 -num_threads=1 -data_path=./data/train/ -validation_data_path=./data/validation/ -model_path=./model/cstm.model 参考
2024-07-01 21:04:16 37KB
1
[目录] 第一章:概述 第二章:整体数据分层 第三章:整体实现框架 第四章:元数据 第五章:ETL 第六章:数据校验 第七章:数据标准化 第八章:去重 第九章:增量/全量 第十章:拉链处理 第十一章:分布式处理增量 第十二章:列式存储 第十三章:逻辑数据模型(数仓模型) 第十四章:数据模型参考 第十五章:维模型 第十六章:渐变维 第十七章:数据回滚 第十八章:关于报表 第十九章:数据挖掘 数据仓库实践杂谈(十四)——数据模型参考 众所周知,信息系统最重要的作用就是处理并保存信息,尤其在商业应用中。以银行记账为例,最重要的是账本,不管前面的流程如何,只要记下来张三某年某月存入100元,业务就算完
2024-05-10 15:27:30 366KB 主题模型
1
word2vec java版源码LF-LDA 和 LF-DMM 潜在特征主题模型 LF-LDA 和 LF-DMM 潜在特征主题模型的实现,如我的 TACL 论文中所述: Dat Quoc Nguyen、Richard Billingsley、Lan Du 和 Mark Johnson。 . 计算语言学协会汇刊,卷。 3,第 299-313 页,2015 年。 LDA 和 DMM 主题模型的实现可在 用法 本节使用预编译的LFTM.jar文件描述命令行或终端中实现的用法。 在这里,预计 Java 1.7+ 已经设置为在命令行或终端中运行(例如:在 Windows 操作系统中将 Java 添加到path环境变量中)。 预编译的LFTM.jar文件和源代码分别位于jar和src文件夹中。 用户可以通过简单地运行ant重新编译源代码(也期望已经安装了ant )。 此外,用户可以在test文件夹中找到输入示例。 输入主题建模语料库的文件格式 与test文件夹中的corpus.txt文件类似,输入的主题建模语料库中的每一行代表一个文档。 这里,文档是由空格字符分隔的序列词/标记。 用户在训练主题模
2023-04-18 11:55:20 7.25MB 系统开源
1
jLDADMM:用于LDA和DMM主题模型的Java包 jLDADMM已发布,它为普通或短文本上的主题建模提供了替代方法。 概率主题模型,例如潜在狄利克雷分配(LDA)[1]和相关模型[2],被广泛用于发现文档集中的潜在主题。 但是,由于数据稀疏性以及此类文本中的上下文有限,将主题模型应用于短文本(例如Tweets)更具挑战性。 一种方法是在训练LDA之前将短文本组合成长的伪文档。 另一种方法是假设每个文档只有一个主题[3]。 jLDADMM提供了LDA主题模型[1]和每个文档一个主题的Dirichlet多项式混合(DMM)模型(即,字母组合的混合)[4]的实现。 LDA和DMM的实现分别使
2023-04-18 11:35:19 133KB nlp topic-modeling lda short-text
1
主题识别+信息提取模型-基于python实现-LDA--LDA主题模型,可以用于社交网络数据分析研究、异常检测、事件检测与演化模型分析、情感分析、链接预测,信息传播等方面的研究
2022-12-01 14:13:50 24KB python 综合资源 开发语言
1
情境化主题模型 上下文化主题模型(CTM)是一系列主题模型,这些主题模型使用语言的预训练表示形式(例如BERT)来支持主题建模。有关详细信息,请参见论文: Bianchi,F.,Terragni,S.,Hovy,D.,Nozza,D.,&Fersini,E.(2021)。具有零镜头学习功能的跨语言情境主题模型。 EACL。 Bianchi,F.,Terragni,S.和Hovy,D.(2020年)。预培训是一个热门话题:上下文化文档嵌入可提高主题一致性 具有上下文嵌入的主题建模 我们的新主题建模系列支持许多不同的语言(即,HuggingFace模型支持的一种),并有两个版本: CombinedTM将上下文嵌入与旧的单词组合在一起,以使主题更连贯; ZeroShotTM是完成任务的理想主题模型,在该模型中,您可能在测试数据中缺少单词,并且,如果经过多语言嵌入训练,则可以继承多语言主题模型
2022-08-13 12:32:38 31.14MB nlp embeddings transformer topic-modeling
1
基于BM25算法的主题模型优化算法,李宇坤,陈光,本文介绍了一种表示和检测微博热点话题的新方法,该方法发现的话题具有更好的可读性和独立性。不同于传统热点话题发现算法,本文��
2022-05-15 22:01:37 523KB 自然语言处理
1