STM32 HAL 库实现乒乓缓存加空闲中断的串口 DMA 收发机制 STM32 HAL 库实现乒乓缓存加空闲中断的串口 DMA 收发机制,轻松跑上 2M 波特率。 STM32 中一般的 DMA 传输方向有内存->内存、外设->内存、内存->外设。通用异步收发传输器(Universal Asynchronous Receiver/Transmitter,UART),在嵌入式开发中一般称为串口,通常用于中、低速通信场景,波特率低有 6400 bps,高能达到 4~5 Mbps。 在 STM32 中使用 DMA 收发数据,可以节约可观的 CPU 处理时间。特别是在高速、大数据量的场景中,DMA 是必须的,而双缓冲区、空闲中断以及 FIFO 数据缓冲区也是非常重要的成分。 在本文中,我们将使用 STM32CubeMX 配置串口,首先使能高速外部时钟,然后设置时钟树。接下来配置串口,选择一个串口,设置模式为 Asynchronous,设置波特率、帧长度、奇偶校验以及停止位长度。然后添加接收和发送的 DMA 配置,注意在 RX 中将 DMA 模式改为 Circular,这样 DMA 接收只用开启一次,缓冲区满后 DMA 会自动重置到缓冲区起始位置,不再需要每次接收完成后重新开启 DMA。 在串口收到数据之后,DMA 会逐字节搬运到 RX_Buf 中。当搬运到一定的数量时,就会产生中断(空闲中断、半满中断、全满中断),程序会进入回调函数以处理数据。全满中断和半满中断都很好理解,就是串口 DMA 的缓冲区填充了一半和填满时产生的中断。而空闲中断是串口在上一帧数据接收完成之后在一个字节的时间内没有接收到数据时产生的中断,即总线进入了空闲状态。 现在网络上大部分教程都使用了全满中断加空闲中断的方式来接收数据,不过这存在了一定的风险:DMA 可以独立于 CPU 传输数据,这意味着 CPU 和 DMA 有可能同时访问缓冲区,导致 CPU 处理其中的数据到中途时 DMA 继续传输数据把之前的缓冲区覆盖掉,造成了数据丢失。所以更合理的做法是借助半满中断实现乒乓缓存。 乒乓缓存是指一个缓存写入数据时,设备从另一个缓存读取数据进行处理;数据写入完成后,两边交换缓存,再分别写入和读取数据。这样给设备留足了处理数据的时间,避免缓冲区中旧数据还没读取完又被新数据覆盖掉的情况。 但是出现了一个小问题,就是 STM32 大部分型号的串口 DMA 只有一个缓冲区,要怎么实现乒乓缓存呢?没错,半满中断。现在,一个缓冲区能拆成两个来用了。看这图我们再来理解一下上面提到的三个中断:接受缓冲区的前半段填满后触发半满中断,后半段填满后触发全满中断;而这两个中断都没有触发,但是数据包已经结束且后续没有数据时,触发空闲中断。 举个例子:向这个缓冲区大小为 20 的程序传送一个大小为 25 的数据包,它会产生三次中断,如下图所示。程序实现原理介绍完成,感谢 ST 提供了 HAL 库,接下来再使用 C 语言实现它们就很简单了。首先开启串口 DMA 接收。 #define RX_BUF_SIZE 20 uint8_t USAR_RX_Buf[RX_BUF_SIZE]; 在上面的例子中,我们定义了一个大小为 20 的缓冲区 USAR_RX_Buf,並将其设置为串口 DMA 的接收缓冲区。然后,我们可以使用 HAL 库提供的函数来开启串口 DMA 接收。 HAL_UART_Receive_DMA(&huart1, USAR_RX_Buf, RX_BUF_SIZE); 在串口收到数据之后,DMA 会逐字节搬运到 RX_Buf 中。当搬运到一定的数量时,就会产生中断(空闲中断、半满中断、全满中断),程序会进入回调函数以处理数据。在回调函数中,我们可以将数据写入 FIFO 中供应用读取。 void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { // 将数据写入 FIFO 中 FIFO_Put(USAR_RX_Buf, RX_BUF_SIZE); } 在上面的例子中,我们使用 HAL 库提供的回调函数 HAL_UART_RxCpltCallback 来处理数据。在这个函数中,我们将数据写入 FIFO 中供应用读取。这样,我们就可以轻松地实现高速的串口收发机制。 使用 STM32 HAL 库可以轻松地实现高速的串口收发机制,轻松跑上 2M 波特率。同时,我们还可以使用乒乓缓存和空闲中断来避免数据丢失和提高系统的可靠性。
2025-04-04 19:14:28 1.22MB stm32
1
双口RAM(Dual Port RAM)是一种在数字设计中常见的存储器结构,它可以同时从两个独立的端口读取和写入数据,适用于实现并行处理和高速数据交换。在这个项目中,我们将关注如何使用Verilog语言来实现双口RAM的乒乓操作,并在Xilinx的Vivado 2017.4工具中进行综合和仿真。 乒乓操作是双口RAM的一种高效利用方式,它通过在两个独立的存储区域之间交替进行读写操作,实现了数据的无缝传递。这种机制常用于实时系统和流水线设计中,以确保在处理新数据的同时,旧数据的处理不受影响。 我们需要理解双口RAM的基本结构。双口RAM通常包括两个独立的读写端口,每个端口都有自己的地址、数据和控制信号,如读写使能。在乒乓操作中,一个端口负责写入数据,而另一个端口则负责读出数据,这两个操作可以并行进行,从而提高了数据处理的速度。 在Verilog实现中,顶层模块(top_level_module)是整个设计的核心,它将包含所有的子模块实例化以及必要的接口信号。这个顶层模块会包含两个控制模块(control_module),分别管理两个端口的读写操作。控制模块根据特定的时序逻辑,切换写入和读取端口,实现乒乓操作。 RAM存储模块(ram_storage_module)是双口RAM的具体实现,它通常由多个存储单元(如DFF)组成,每个存储单元对应一个地址,存储数据。在乒乓操作中,这个模块会包含两个独立的RAM块,一个用于写入,另一个用于读出。 输入数据二选一模块(input_mux_module)用于在两个不同的数据源之间选择,当乒乓操作切换时,这个模块会根据控制信号决定从哪个端口接收数据。输出数据二选一模块(output_mux_module)则根据控制信号从两个RAM块中选择数据输出,确保在写入新数据的同时,旧数据能够被正确读出。 在Vivado 2017.4中,你可以使用IP Integrator工具创建一个自定义的IP核,将这些Verilog模块集成在一起。然后,通过Vivado的Simulation工具对设计进行功能仿真,验证乒乓操作是否按照预期工作。此外,还需要进行时序分析和综合,以确保设计满足目标FPGA的时序约束,并最终生成比特流文件(bitstream),下载到FPGA硬件中运行。 双口RAM的乒乓操作是实现高性能、低延迟数据处理的关键技术之一。通过理解和实现这样的设计,我们可以更好地掌握Verilog语言和FPGA设计流程,为更复杂的数据处理和通信系统打下基础。在实际应用中,这种技术常被用于图像处理、信号处理和网络数据包处理等领域。
2024-08-15 16:18:42 14.84MB verilog VHDL 乒乓操作 FPGA
1
主控为N32G435单片机,包含普通USART+DMA的传输以及软件双缓冲模式,适合高负载环境下的串口通信,主要使用DMA的半完成和完成中断,可不占用单片机线程资源的情况下完成大量数据的接收,代码测试串口波特率为2.5M。
2024-02-26 21:00:47 2.12MB USART
1
异步fifo乒乓操作工程文件
2023-02-22 19:46:52 17.82MB fpga verilog 乒乓操作
1
ZYNQ AXI4读写DDR3进行图像存储的乒乓操作
2022-11-17 21:41:49 62KB ZYNQ FPGA AXI4总线 图像处理
1
激战乒乓-少儿编程scratch项目源代码文件案例素材.zip
最简单的乒乓开关程序代码
2022-10-11 09:01:00 63B PLC PP
1
1、设计了一个异步模块,该模块可以自定义数据位宽与数据深度,且可以输出可读数据数与已写数据数,当然用户也可以自定义满阈值数。 2、设计了两级fifo缓存器,当然在此基础上你也可以进行扩展与沿伸。 3、注意:此设计的读时钟应该比写时钟要快,否则会丢失一部分数据。
2022-08-23 18:07:25 93KB verilog fpga
1
一个简单的基于函数的 pong 实现。 使用鼠标对抗基本的计算机播放器。 要启动,只需运行函数 pong()。 游戏将一直持续到人偶关闭为止。
2022-06-13 20:39:24 22KB matlab
1
乒乓操作实测源码,颇具实用性。
2022-06-01 20:59:11 11.68MB 双口ram 乒乓操作
1