**背景** 浸润性导管癌(IDC)是所有乳腺癌中最常见的亚型。为了对整个组织样本进行侵袭性分级,病理学家通常专注于包含 IDC 的区域。因此,自动侵袭性分级的常见预处理步骤之一是划定整个组织切片中 IDC 的确切区域。 **内容** 原始数据集包含 162 张乳腺癌(BCa)标本的整个组织切片图像,扫描倍率为 40 倍。从中提取了 277,524 个大小为 50 x 50 的 patches(198,738 个 IDC 阴性,78,786 个 IDC 阳性)。每个 patch 的文件名格式为:u_xX_yY_classC.png —— 例如 10253_idx5_x1351_y1101_class0.png。其中,u 是患者 ID(10253_idx5),X 是该 patch 裁剪位置的 x 坐标,Y 是该 patch 裁剪位置的 y 坐标,C 表示类别,0 为非 IDC,1 为 IDC。
2025-04-04 23:40:02 5KB 深度学习 源码
1
自适应神经模糊推理系统(ANFIS)是一种能够进行函数逼近的计算工具,可以解决乳腺癌的分类问题。本实验设计了一种自适应神经模糊推理系统,用于乳腺癌分类问题。内附实验程序和实验报告,亲测完美运行。
1
Breast_cancer_classification_ 使用四种算法对乳腺癌进行分类,并检查每个模型的预测准确性得分
2021-06-22 15:15:20 222KB JupyterNotebook
1
乳腺癌分类 使用支持向量机的乳腺癌诊断分类 客观的: 知识库是一项学习练习,旨在: 从可用数据集中应用机器学习的基本概念 根据观察到的数据集评估和解释我的结果并证明我的解释是正确的 创建笔记本作为计算记录并记录我的思考过程。 分析分为多个部分,保存在该存储库的juypter笔记本中识别问题和数据源探索性数据分析预处理数据构建模型以预测乳房细胞组织是恶性还是良性 达到的精度-97%
1
手动搭建了一个bp神经网路,对乳腺癌数据集进行分类。数据集从sklearn中获得,神经网络用numpy手动搭建。手动搭建了一个bp神经网路,对乳腺癌数据集进行分类。数据集从sklearn中获得,神经网络用numpy手动搭建。
1