命名实体识别(NER)是自然语言处理(NLP)领域中的关键任务,它涉及识别文本中具有特定意义的实体,如人名、地名、组织名等。标题“中文NER集合”表明这是一个专注于中文环境下的命名实体识别资源集合。描述中提到的“基于马尔科夫逻辑的命名实体识别技术”,暗示了该压缩包可能包含一些利用马尔科夫逻辑网络(Markov Logic Networks, MLNs)的方法来解决中文NER问题的研究。 马尔科夫逻辑网络是一种概率逻辑框架,它结合了马尔科夫随机场和第一阶逻辑的优点,可以用于建立复杂的语义关系模型。在NER中,MLNs可以用来捕捉实体之间的局部和全局上下文信息,以提高识别准确性。例如,一个实体的类型可能与其前后词汇有关,MLNs可以通过定义这些依赖关系的规则来帮助识别。 压缩包中的文件名称提供了更多线索: 1. "NER综述.pdf":这可能是一个全面的NER技术综述,涵盖了各种方法和技术,包括传统的统计模型和深度学习方法。 2. "SSSSSSSSSSSSSSSSSSSSSSSOpen Information Extraction from the Web.pdf":可能探讨的是从互联网上提取开放信息,可能包括NER作为信息提取的一部分。 3. "基于层叠隐马尔可夫模型的中文命名实体识别.pdf":这可能是介绍如何使用层叠隐马尔可夫模型(Cascaded HMMs)进行中文NER的论文,这是一种经典的序列标注模型。 4. "Open Domain Event Extraction from Twitter.pdf":可能关注的是从社交媒体,特别是Twitter中提取开放领域的事件,这通常需要有效的NER来识别事件相关的实体。 5. "一种开放式中文命名实体识别的新方法.pdf":这可能描述了一种新的、创新的中文NER算法,可能采用了不同于传统方法的策略。 6. "[46]ner.pdf":文件名较简单,但可能是一个特定的NER研究或技术的详细说明,编号可能表示参考文献的序号。 这个集合对于学习和研究中文NER非常有价值,它可能包含了理论概述、经典模型的解释、最新方法的介绍以及实际应用案例。通过深入阅读这些资料,我们可以了解命名实体识别的发展历程,比较不同方法的优缺点,以及如何将这些技术应用于实际的数据挖掘和事件抽取任务。此外,对于想要在中文环境下提升信息提取和理解能力的研究者和开发者来说,这些资源无疑是一个宝贵的资料库。
2025-05-19 20:41:54 1.65MB 命名实体识别 数据挖掘 事件抽取
1
事件是一种重要的知识,近年来,越来越多的工作关注于从开放域或领域文本中抽取结构化事件知识。同时,除了本身就很困难的事件抽取任务之外,近年来,越来越多的研究者开始关注于事件的推理工作中。以下给出由复旦大学知识工厂给出的上下系列综述论文“事件抽取及推理”。欢迎相关研究人员下载学习。
2022-05-01 21:30:28 4.65MB event_extraction reasoning
1
ACE_2005完整数据集,包括english,chinese,arabic数据,可用于信息抽取,事件抽取等。-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2022-04-29 21:06:23 100.56MB ACE 信息抽取 事件抽取 数据集
2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务2020语言与智能技术竞赛:事件抽取任务
2022-04-21 17:06:55 5.74MB 人工智能 竞赛 数据科学
事件抽取是自然语言处理中一项具有挑战性的任务,对于后续的信息处理有重要作用。本文采用BiLSTM模型与Attention层结合,完成了事件触发词检测,实现了事件类别的分类。与以往的事件检测方法相比,本文将两类任务视作同一个任务,避免了上游任务对下游任务的影响,使用神经网络学习特征,引入注意力机制突出重点信息。在MELL语料上进行生物事件抽取实验,结果表明准确率和召回率较高,F1值为81.66%,优于以往的方法。
2022-04-05 13:17:16 1.47MB 事件抽取; 注意力机制; BiLSTM
1
事件抽取 事件关系抽取 数据集 包含部分ACE 2005 Multilingual Training Corpus 和 Text Analysis Conference Knowledge Base Population (TAC KBP)的语料集
2021-09-29 16:52:25 3.49MB ACE2005 TAC KBP 事件抽取语料 TEACED
1
事件抽取与金融事件图谱构建 .pdf
2021-09-23 20:16:17 3.58MB 图谱 事件抽取
1
中文事件抽取技术的研究,中文事件抽取技术的研究
2021-09-20 14:59:32 4.99MB 中文,事件,抽取,技术
1
如何利用工具进行快速标注是所有人的愿望,赛莉自动标注系统可以自动完成大部分的工作,这是我们的事件抽取展示文档。我们做了标准语料 事件抽取标签展示 无版权 不做商业用途 ,更多语料,欢迎关注 https://www.botsally.tech BOTSALLY® 赛莉®中文语料自动标注系统 语料持续更新
2021-09-16 16:25:35 7KB 事件抽取 NLP 自动标注 语料
1
事件抽取和金融事件图谱构建方向的一些探索,主要包括特征表示、训练数据生成和扩展、多事件协同抽取、篇章级事件抽取、事件关系抽取这几个重要的研究方向,并附上相关的9篇论文,非常经典,值得细品。
2021-09-07 20:49:15 11.88MB Event
1