在实际的复杂应用环境下,光伏阵列不仅存在因局部阴影情况影响导致输出功率曲线( P-U 曲 线) 呈现多极值点的问题,还具有难以考察的传感器精度、采样精度等实际应用限制所带来的量测噪 声问题。为此,在分析复杂应用环境下光伏阵列的输出特性的基础上,提出先采用递推最小二乘估 计来削弱量测噪声的影响,再运用比粒子群算法控制更简单,鲁棒性更好的人工蜂群算法跟踪全局 最大功率点的 MPPT 控制策略。最后通过仿真与实验,验证了该 MPPT 控制策略的可行性和有效性。 随着全球能源结构的转变,可再生能源得到了广泛的关注和应用。光伏能源作为一种清洁、高效、可持续的能源,其应用前景广阔。然而,由于环境影响和设备本身特性,光伏阵列在实际应用中存在着输出功率曲线多极值点的问题,这给最大功率点跟踪(MPPT)带来了挑战。 为解决这一问题,研究者提出了基于人工蜂群算法的MPPT控制策略。人工蜂群算法是一种模拟自然界蜜蜂觅食行为的优化算法,它通过模拟蜜蜂在寻找食物源时的侦查、唤起和跟随行为来完成全局搜索和局部搜索。与传统的粒子群优化算法相比,人工蜂群算法因其简单性和更好的鲁棒性而受到青睐。 在提出控制策略之前,研究者首先采用递推最小二乘估计法对量测噪声进行削弱。这是因为量测噪声会导致MPPT控制算法的性能降低,影响光伏阵列能量输出的准确性。递推最小二乘估计是一种参数估计方法,能够在线更新估计值,即使在存在噪声的情况下也能提供较为准确的估计结果。 在此基础上,研究者运用人工蜂群算法来跟踪光伏阵列的最大功率点。算法中,每个蜜蜂代表一个解,通过侦查蜂发现新的食物源(即新的功率点),观察蜂对现有食物源进行评估,根据一定的选择机制(如轮盘赌选择)选择好的食物源。通过不断地迭代,最终找到全局最优解,即最大功率点。 为了验证所提出的MPPT控制策略的可行性与有效性,研究者通过仿真和实验来进行测试。仿真在Matlab/Simulink环境下进行,Matlab/Simulink是一个集数学计算和仿真环境于一体的软件,非常适合进行算法的仿真测试。实验中,研究者使用了如“ABC.m”、“RouletteWheelSelection.m”、“CostFunction.m”等脚本文件来实现人工蜂群算法的相关操作。此外,“mptt.slx”可能是一个Simulink模型文件,用于构建光伏阵列MPPT的仿真模型。 通过对比实验结果,研究人员可以评估控制策略的性能,包括跟踪速度、准确性和稳态误差等指标。这些指标的优劣直接关系到MPPT控制策略在实际应用中的表现,是评价控制策略好坏的关键因素。 人工蜂群算法因其独特的优势,在处理具有多极值点问题的光伏阵列MPPT控制中显示出较高的实用价值。递推最小二乘估计法的加入进一步提高了控制策略对量测噪声的抵抗能力,确保了算法的稳定性。研究者通过仿真和实验验证了该策略的有效性,为光伏能源的实际应用提供了有力的技术支持。
2025-12-15 15:33:11 37KB MPPT 蜂群算法 matlab simulink
1
本文介绍了一种基于人工蜂群算法与非完全beta函数的自适应图像增强方法。该方法通过人工蜂群算法的全局优化能力动态确定最佳变换参数α和β,利用非完全beta函数自动拟合图像增强的变换曲线。文章详细阐述了图像非线性增强的原理、人工蜂群算法的应用、适应度函数的设计以及算法实验步骤。实验结果表明,该方法能有效增强图像质量,提高图像内容的丰富度和动态范围。最后,文章提供了相关的参考文献和Matlab代码实现。 人工蜂群算法是一种模拟自然界中蜜蜂觅食行为的群体智能优化算法,其核心思想是利用群体中个体之间的协作与信息共享来解决优化问题。在图像处理领域,特别是图像增强方面,该算法的应用体现在其能够寻找最优的图像变换参数,以达到提升图像质量的目的。本文所提到的基于人工蜂群算法的图像增强方法,特别强调了算法的全局优化能力,这种能力确保了在进行图像增强时,能够找到最佳的参数配置,使得增强效果尽可能地接近理想状态。 非完全beta函数是一种统计学上的连续概率分布函数,它在图像处理中的应用主要在于其能够提供一种灵活的函数形式来模拟和描述图像的增强变换曲线。利用这种函数形式,可以实现对图像亮度、对比度等多种视觉属性的调整,以达到提升图像视觉效果的目的。结合人工蜂群算法,非完全beta函数能够自动拟合出一条满足特定需求的变换曲线,为图像增强提供了数学上的保证。 文章详细地介绍了图像非线性增强的原理,这包括了图像增强的必要性、常用方法以及各种方法的优缺点。同时,对于人工蜂群算法的应用,文章讲解了算法如何在图像增强中实现参数的全局优化,这包括了算法的工作流程、各组成部分的功能以及如何应用到图像参数调整中去。此外,文章还对适应度函数的设计进行了阐释,适应度函数是人工蜂群算法中评价解的好坏的重要工具,其设计的优劣直接影响到算法的优化效果。文章通过一系列的算法实验步骤,详细说明了该方法的具体操作流程,并通过实验结果证明了方法的有效性。 为了方便读者理解和实践该方法,文章不仅提供了详实的实验结果,还公开了完整的Matlab代码实现。通过这些代码,读者可以更加直观地了解到算法的具体实现过程,以及如何利用Matlab这一强大的科学计算工具进行图像增强的实验和分析。 该方法在图像增强领域提供了一种有效的技术手段。利用人工蜂群算法进行参数优化,结合非完全beta函数的图像变换,不仅提高了图像内容的丰富度和动态范围,而且在图像清晰度和对比度的改善上也有着明显的效果。这对于提高图像处理的质量、丰富图像处理的方法库具有重要意义。
2025-12-08 20:20:31 16KB 软件开发 源码
1
内容概要:本文探讨了利用人工蜂群算法进行车间布局优化的方法,旨在降低人因负荷和物流成本。文章首先介绍了车间布局优化的重要性和复杂性,随后详细解释了人工蜂群算法的工作原理及其在这一领域的应用。接着,通过Python代码展示了算法的具体实现步骤,包括参数定义、初始种群设置、适应度函数计算、主循环迭代等关键环节。最后,通过对实验结果的分析,验证了该算法的有效性,并讨论了进一步优化的可能性。 适合人群:对智能制造、优化算法感兴趣的工程技术人员,尤其是从事车间管理、工业自动化相关工作的专业人士。 使用场景及目标:适用于需要优化车间布局的企业,特别是那些希望减少生产过程中的人因负荷和物流成本,提升生产效率的情况。目标是帮助企业和研究人员更好地理解和应用人工蜂群算法,以解决实际生产中的布局优化难题。 其他说明:文中提供的Python代码模板可以直接用于实际项目中,只需替换具体的车间尺寸、功能区大小和设备间距等参数即可运行。同时,文章还强调了算法参数调整的重要性,鼓励读者根据实际情况进行优化试验。
2025-08-26 15:29:19 279KB
1
多序列比对是生物信息学中最重要和挑战性的任务之一. 针对多序列比对是NP 完全组合优化问题, 引.入Tent 混沌初始化种群策略、不同蜂种的邻域搜索策略和锦标赛选择策略等, 提出了一种基于多策略人工蜂群.的多序列比对算法. 该算法应用Tent混沌初始化种群策略以使初始个体多样化和获取较好初始解; 其次针对不同.蜂种的特性设计不同的邻域搜索策略以平衡算法的全局探索与局部开发能力. 同时引入序列比对的蜜源编码方.法以适应多序列比对的离散性. 实验结果表明, 该算法鲁棒性较强, 能获取较好的比对性能和生物特性
2023-11-24 08:52:47 365KB 人工蜂群算法;多策略;
1
【路径规划】基于人工蜂群算法求解多配送中心的车辆路径规划问题matlab源码.zip
2023-05-17 12:00:57 968KB
1
MATLAB编程-群智能优化算法应用-人工蜂群算法实现PID参数整定
2023-05-03 19:44:14 3KB MATLAB 人工蜂群 PID参数整定
【智能优化算法】基于人工蜂群算法求解多目标优化问题附matlab代码.zip
2023-04-12 10:39:40 718KB matlab
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真
2023-04-06 16:36:40 341KB matlab
1
针对人工蜂群算法在求解函数优化问题中存在收敛精度不高、收敛速度较慢的问题,提出了一种改进的增强寻优能力的自适应人工蜂群算法。该算法利用逻辑自映射函数产生混沌序列对雇佣蜂搜索行为进行混沌优化,并引入萤火虫算法中的自适应步长策略动态调整观察蜂的搜索行为,从而提升了算法的局部搜索能力。基于标准测试函数的仿真结果表明,改进后的人工蜂群算法在寻优精度和收敛速度上均有明显提高。
1