内容概要:本文详细介绍了利用遗传算法进行微电网优化调度的MATLAB代码实现及其应用场景。文中首先解释了微电网优化调度面临的挑战,如光伏发电受天气影响、风电出力不稳定等问题。接着展示了核心代码,包括适应度函数的设计,将发电成本、环境成本、蓄电池折旧成本和分时电价等因素综合考虑。此外,文章深入探讨了约束处理方法,如燃机爬坡约束的动态罚函数处理,以及种群初始化策略,如基于风速预测的风机出力初始化。最后,文章讨论了优化结果的可视化展示,如燃机在电价峰值时段的调峰作用,以及蓄电池在电价低谷时的充电行为。 适合人群:从事微电网优化调度的研究人员和技术人员,尤其是熟悉MATLAB编程并希望深入了解遗传算法在能源管理中应用的人士。 使用场景及目标:适用于需要解决复杂非线性约束条件下微电网优化调度问题的实际工程项目。目标是在满足用电需求的同时,最小化发电成本、环境成本和其他运营成本,确保系统的经济性和稳定性。 其他说明:文章提供了详细的代码注释和优化建议,如增加定向变异和改进蓄电池充放电效率模型。此外,还提到了一些潜在的扩展方向,如引入实时电价预测模型和电动汽车充放电调度模块。
2025-07-02 22:16:49 915KB
1
多项式曲线拟合C代码详解:实现线性至四阶多项式拟合,附带仿真结果与Excel对比图,多项式曲线拟合,c代码,可实现1阶线性,2-4阶多项式曲线拟合,代码注释详细,方便移植,书写规范 图片有现场拟合参数的1-4阶的keil仿真结果和Excel对照图。 备注一下,这是个多项式求解代码,求每个相的系数 ,核心关键词:多项式曲线拟合; C代码; 1阶线性; 2-4阶多项式; 代码注释详细; 方便移植; 书写规范; Keil仿真结果; Excel对照图; 求解系数。,"多项式曲线拟合C代码:1-4阶系数求解,Keil仿真结果对照"
2025-07-02 18:23:23 4.23MB sass
1
无感FOC驱动滑膜观测器算法应用及全开源代码详解——采用SVPWM与滑模控制方案,基于STM32F103实现,无感FOC驱动滑膜观测器算法原理及应用,采用全开源c代码及SVPWM弦波方案,基于STM32F103处理器,无感FOC 滑膜观测器 滑模 弦波方案 svpwm 算法采用滑膜观测器,全开源c代码,全开源,启动顺滑,提供原理图、全套源码。 使用stm32f103。 ,无感FOC; 滑膜观测器; 滑模; 弦波方案; svpwm; 代码全开源; STM32F103; 启动顺滑。,基于滑膜观测器的无感FOC算法:STM32F103全开源C代码实现
2025-06-25 14:47:58 920KB xbox
1
内容概要:本文详细介绍了使用UDEC7.0进行煤层开挖数值模拟的全过程,涵盖从初始化设置、煤层生成、节理设定、开挖模拟、监测点布置到最后的数据分析和可视化。文中不仅提供了完整的代码实例,还对每一步骤进行了详细的解释和注意事项提示。通过调整不同参数如杨氏模量、摩擦角、节理间距等,可以研究煤层开挖过程中裂隙发育规律及其对周围岩体的影响。此外,作者分享了许多实用技巧,如如何避免常见错误、优化计算效率以及提高模型精度的方法。 适合人群:从事岩土工程、矿山安全、地质灾害防治等领域科研和技术人员,尤其是对UDEC软件有一定了解并希望深入掌握其应用的人群。 使用场景及目标:适用于需要进行煤层开挖数值模拟的研究项目或工程项目。主要目标是帮助用户理解UDEC7.0的工作机制,掌握构建复杂地质模型的技术要点,从而能够独立完成高质量的数值模拟任务。 其他说明:文中提供的代码和方法均经过作者多次调试验证,确保可靠性和实用性。同时,针对可能出现的问题给出了具体的解决方案,有助于初学者快速上手并解决实际问题。
2025-06-20 17:17:20 830KB
1
"原胞自动机与晶粒长大模拟:二维三维Python源代码详解,Numba加速,高效运行,新手入门必备",原胞自动机,晶粒长大二维三维都可以,python源代码,已使用numba加速,运行速度很快。 新手入门必备。 可控制晶粒初始个数,盒子大小,与生长速度。 ,原胞自动机; 晶粒长大; 二维三维; Python源代码; Numba加速; 运行速度快; 控制参数。,原胞自动机晶粒长大模拟软件——二维三维通用Python源代码,高效运行、支持控制生长参数 在计算机科学和数学领域中,原胞自动机(Cellular Automaton,简称CA)是一种离散模型,由一系列在时间和空间上分布的单元组成,单元的状态依照某种确定性的规则随时间演化。这种模型的代表性例子是“生命游戏”,其能够模拟出复杂的动态系统行为。原胞自动机在材料科学、生态学、化学和物理学等领域有着广泛的应用,特别是在晶粒长大模拟方面,它能够提供一种直观且具有一般性的模拟方法。 晶粒长大的模拟对于理解材料在不同条件下的微观结构演变至关重要。晶粒的形状、大小及其分布对材料的力学性能、磁性能等具有决定性的影响。通过模拟晶粒的生长过程,研究者可以在无需进行复杂实验的情况下探索材料的性质。原胞自动机的引入为这种模拟提供了一种有效的工具,尤其是在对二维和三维晶粒系统的研究中,能够展现更加接近真实世界的现象。 Python作为一门广泛应用于科学计算和数据分析的编程语言,因其简洁明了的语法和强大的库支持,成为实现原胞自动机模拟的首选语言之一。Python的库如Numba是一个开源的即时编译器,它可以将Python代码编译为机器码,从而加速数值计算,使原胞自动机的运行更加高效。 本文所涉及的源代码提供了二维和三维的晶粒生长模拟。用户可以根据需要设定晶粒的初始个数、盒子的大小以及生长速度等参数。通过修改这些参数,可以模拟在不同条件下的晶粒生长过程,观察晶粒结构随时间的变化。这种方法在材料科学领域尤其有价值,因为实际材料的晶粒结构往往受到加工条件的影响。 文章的文件列表中包含了相关的文档和图片资源。文档部分提供了详细的源代码说明,包括如何引入必要的库、初始化参数、以及模拟运行的过程。同时,也提供了HTML格式的文章,这可能是一个详细的教程或者使用说明,帮助用户理解整个模拟的过程以及如何使用源代码。图片资源则可能是用来展示模拟结果的示例图形,辅助说明晶粒长大的状态变化。 压缩包中的文件名还表明,源代码的设计考虑了二维和三维模型的通用性,即该代码可以在两种不同的模拟环境下运行,为研究者提供更广泛的适用范围。文件名中包含“实现”、“引言”、“模型”、“二维三维”等关键词,反映了源代码的结构和核心内容,以及其在不同维度上的应用。 整体而言,本压缩包中的内容对于那些希望使用Python进行晶粒生长模拟,并且希望利用Numba库优化代码性能的新手来说,是一个非常有价值的资源。通过这些详细的源代码和相关文档,用户可以快速入门并进行自己的模拟实验,从而深入理解原胞自动机在材料科学中的应用。
2025-06-20 15:26:41 2.44MB 哈希算法
1
内容概要:本文介绍了基于卷积长短期记忆神经网络(CNN-LSTM)的时间序列预测模型的设计与实现。该模型融合了CNN强大的特征提取能力和LSTM对于时间序列的预测优势,适用于处理具有时序特性的多维数据。项目通过多种性能评估指标以及用户友好的GUI界面来增强其实用性和准确性。 适用人群:对时间序列预测感兴趣的初学者及有一定深度学习基础的研发人员。 使用场景及目标:主要应用于金融市场预测、销量预测、气象数据分析和生产环境监控等领域,帮助用户理解时间序列的特性,提高模型预测精度。 其他说明:项目实现了完整的模型构建、训练与评估流程,同时也强调了数据预处理的重要性,为后续的研究提供了参考。此外,还提出了几个可能的改进方向,比如引入注意力机制等高级技术以增加模型复杂性和适应性。
2025-05-17 14:12:44 37KB 时间序列预测 深度学习 MATLAB GUI设计
1
内容概要:本文介绍了如何使用 MATLAB 和鲸鱼优化算法(WOA)优化卷积神经网络(CNN),以实现多变量时间序列的精确预测。文章详细描述了数据处理、WOA算法的设计与实现、CNN模型的构建与训练、模型评估与结果可视化等各个环节的具体步骤。同时,提供了完整的程序代码和详细的注释说明。 适合人群:具备一定的 MATLAB 编程基础,对时间序列预测、深度学习及优化算法感兴趣的科研人员和工程师。 使用场景及目标:主要用于金融预测、能源调度、气象预报、制造业和交通流量预测等领域,旨在通过优化的 CNN 模型提高预测的准确性和鲁棒性。 其他说明:文章还探讨了项目的背景、目标与挑战,以及未来可能的改进方向。通过实验结果展示了模型的有效性和优越性。
2025-05-15 22:27:04 50KB DeepLearning
1
本文详细介绍了一个使用MATLAB实现鲸鱼优化算法(WOA)优化卷积神经网络(CNN)来进行多输入单输出回归预测的研究项目。首先介绍了该项目的基本概况以及相关的理论背景,并展示了具体程序的运行流程和每个关键步骤的技术细节。该项目实现了对CNN模型超参数的优化,从而显著提高了回归预测的效果,并附带提供了一系列定量评估方法。最后,还探讨了未来可能的发展方向和完善的地方。 适用人群:有一定深度学习和优化算法基础知识的研发人员或研究人员。 使用场景及目标:针对复杂或大量特征输入而需要精准的单变量输出预测任务,例如金融时间序列分析,气象数据分析等领域。 推荐指南:由于涉及机器学习的基础理论及其算法的应用,对于初学者来说应当首先对CNN和WOA有一定的理解和认识后再开始尝试本项目实践。同时,深入学习相关资料有助于更好的完成实际操作。
2025-05-15 21:30:28 38KB 回归预测 MATLAB
1
内容概要:本文详细介绍了一个基于 Python 的多输入单输出回归预测项目,采用随机配置网络(SCN),支持图形用户界面操作,主要功能包括数据预处理、模型构建与训练、评估以及预测结果可视化等。 适合人群:具备一定编程基础的开发者和技术爱好者,尤其对深度学习、神经网络及其实际应用有兴趣的研究者。 使用场景及目标:本项目特别适用于需要利用历史数据对未来趋势做出预测的应用场合,如股票市场预测、产品销售量预测、商品价格走势判断以及能源消耗情况估计等。旨在帮助用户理解并掌握从数据准备到模型部署的一整套流程。 其他说明:为了使模型更具实用价值,项目提出了一些改进方向,比如增加更多高级特性、增强模型的可解性和效率等;强调了正确执行数据预处理步骤的重要性和避免过拟合现象的方法论指导。
2025-05-15 15:56:31 38KB 深度学习 神经网络 Python TensorFlow
1
隧道工程:FLAC-PFC耦合代码详解——开挖平衡与衬砌结构可视化分析,隧道开挖FLAC-PFC耦合模拟代码:内外双重区域平衡开挖与注释详解,隧道开挖flac-pfc耦合代码,包含平衡开挖部分 如图,隧道衬砌外面是pfc的ball与wall-zone,再外面是Flac的zone,每行都有很详细的注释小白也能看得懂 ,隧道开挖; FLAC-PFC耦合代码; 平衡开挖部分; 隧道衬砌; PFC的ball与wall-zone; Flac的zone; 详细注释。,FLAC-PFC耦合代码:隧道开挖与衬砌结构模拟
2025-05-12 14:58:36 905KB 正则表达式
1