内容概要:本文介绍了2025年第二十二届五一数学建模竞赛的C题,主题为社交媒体平台用户分析问题。文章详细描述了用户与博主之间的互动行为,如观看、点赞、评论和关注,并提供了两份附件的数据,涵盖2024年7月11日至7月22日的用户行为记录。竞赛要求参赛者基于这些数据建立数学模型,解决四个具体问题:1)预测2024年7月21日各博主新增关注数,并列出新增关注数最多的前五名博主;2)预测2024年7月22日用户的新增关注行为;3)预测指定用户在2024年7月21日是否在线及其可能与博主产生的互动关系;4)预测指定用户在2024年7月23日的在线情况及其在不同时间段内的互动数,并推荐互动数最高的三位博主。通过这些问题的解决,旨在优化平台的内容推荐机制,提升用户体验和博主影响力。 适合人群:对数学建模感兴趣的学生、研究人员以及从事数据分析和社交媒体平台优化的专业人士。 使用场景及目标:①通过历史数据建立数学模型,预测用户行为,优化内容推荐;②帮助平台更好地理解用户与博主之间的互动关系,提升平台的运营效率和用户体验。 阅读建议:本文涉及大量数据分析和建模任务,建议读者具备一定的数学建模基础和数据分析能力。在阅读过程中,应重点关注如何利用提供的数据建立有效的预测模型,并结合实际应用场景进行思考和实践。
1
主动配电网两阶段鲁棒恢复优化模型及其MATLAB代码实现。首先,通过对IEEE Transactions on Power Systems文献的深入解读,阐述了该模型的设计理念与实践应用。该模型针对不确定分布式发电(DG)出力和负荷大小的情况,提出了两阶段鲁棒恢复策略:第一阶段确定故障恢复策略,第二阶段寻找最恶劣场景。文中还介绍了C&CG方法用于求解该模型的具体步骤。此外,文章提供了确定性和两阶段鲁棒故障恢复方法的MATLAB代码,并通过蒙特卡洛模拟法进行N-1故障扫描,验证了模型的有效性和优越性。 适合人群:从事电力系统研究和开发的专业人士,尤其是对主动配电网故障恢复感兴趣的科研人员和工程师。 使用场景及目标:适用于需要提升主动配电网恢复能力的研究项目和工程实践中,帮助研究人员理解并应用两阶段鲁棒恢复优化模型,从而提高系统的稳定性和可靠性。 其他说明:本文不仅提供理论分析,还包括具体的代码实现,便于读者在实际工作中进行实验和验证。
2025-10-27 12:01:05 884KB MATLAB 分布式发电
1
基于混合决策的完全自适应分布式鲁棒框架:Wasserstein度量的多阶段电力调度策略,基于混合决策与Wasserstein度量的完全自适应分布式鲁棒优化模型:应对风电渗透下电网调度挑战的研究,基于混合决策的完全自适应分布鲁棒 关键词:分布式鲁棒DRO wasserstwin metric Unit commitment 参考文档:无 仿真平台:MATLAB Cplex Mosek 主要内容:随着风电越来越多地渗透到电网中,在实现低成本可持续电力供应的同时,也带来了相关间歇性的技术挑战。 本文提出了一种基于混合决策规则(MDR)的完全自适应基于 Wasserstein 的分布式鲁棒多阶段框架,用于解决机组不确定性问题(UUC),以更好地适应风电在机组状态决策和非预期性方面的影响。 调度过程。 与现有的多阶段模型相比,该框架引入了改进的MDR来处理所有决策变量以扩展可行域,因此该框架可以通过调整决策变量的相关周期数来获得各种典型模型。 因此,我们的模型可以为一些传统模型中不可行的问题找到可行的解决方案,同时为可行的问题找到更好的解决方案。 所提出的模型采用高级优化方法和改
2025-10-16 17:24:59 165KB
1
基于SVPWM算法的永磁同步电机载波扩频调制优化模型及其在电机高频振动噪声控制中的仿真研究:随机信号和自研混合算法的综合应用,永磁同步电机SVPWM算法载波扩频调制技术:随机混合算法仿真研究及高频振动噪声优化,永磁同步电机SVPWM算法载波扩频调制算法控制仿真simulink模型。 用于优化电机高频振动噪声优化研究。 包括随机(可扩展正弦、锯齿、方波),自研混合算法等。 ,永磁同步电机;SVPWM算法;载波扩频调制算法;控制仿真;Simulink模型;优化;高频振动噪声;随机信号;混合算法,基于SVPWM算法与载波扩频调制的永磁同步电机控制仿真与振动噪声优化研究
2025-09-16 21:31:26 704KB kind
1
基于GAMS和MATLAB平台的多能源调频安全约束机组组合优化模型——整合火电机组、海上风电与储能系统的协同应用,《融合GAMS与MATLAB的电力系统安全约束机组组合模型:火电机组、海上风电及储能调频的优化研究》,GAMS+MATLAB代码:《考虑火电机组、海上风电、储能共同参与调频的电力系统安全约束机组组合》,模型很创新,可改进发文,本人biye了用不着文章,本来打算融合其他求解算法发EI,有idea一起送给有缘人,懂得来,同行勿扰~ 在传统机组组合模型中考虑频率安全约束,考虑了火电机组 海上风电 和储能参与调频,题材新颖,优化模型基于GAMS平台编程,算例分析在IEEE 39节点系统上进行,画图基于MATLAB平台 ,核心关键词: 考虑火电机组; 海上风电; 储能调频; 电力系统安全约束机组组合; GAMS代码; MATLAB画图; IEEE 39节点系统; 优化模型; 创新模型; 融合其他求解算法。,GAMS-MATLAB融合模型:创新电力调频策略
2025-08-21 13:29:27 3.87MB paas
1
内容概要:本文详细探讨了电力市场中抽水蓄能电站的三种主要调度模式:自调度、半调度和全调度。通过对美国电力市场的实例分析,展示了不同模式下的优化模型和Matlab代码实现。自调度模式由电站自行决定充放电时机,仅考虑水库容量和充放电效率;半调度模式则在电网指导下进行优化,增加了机组启停和爬坡率等约束;全调度模式将电站完全交由电网统一调度,实现了系统级优化。文中还讨论了各模式在中国电力市场的应用前景及改进建议。 适合人群:从事电力系统调度、优化算法研究的专业人士,以及对电力市场感兴趣的科研人员和技术开发者。 使用场景及目标:适用于电力市场调度策略的研究与实施,特别是针对抽水蓄能电站的优化调度。目标是提高电站经济效益的同时确保电网的安全稳定运行。 其他说明:文章提供了详细的Matlab代码示例,帮助读者理解和实现各种调度模式的优化模型。此外,还强调了中国电力市场特点对调度模式选择的影响,提出了适应国情的具体建议。
2025-07-29 09:27:19 1.22MB
1
利用层次分析法建立了一个公务员招聘的数学优化模型.首先将面试成绩、期望成绩与笔试成绩转化为相应的权重,再充分考虑应聘人员的志愿,最后建立双向选择的权重计算模型,并在处理过程中抓住应聘人员的实际权重与各部门期望权重的贴近度,运用整数规划确定出各种条件下的最优分配方案.对一般情况即Ⅳ个应聘人员M个用人单位时做了合理的论证,以达到该模型在运用中的推广.
2025-06-07 16:21:20 204KB 自然科学 论文
1
在人工智能领域,随着深度学习技术的快速发展,大模型微调技术成为了一项重要的研究方向。模型微调,尤其是针对预训练语言模型的微调,已经成为提高特定任务性能的有力手段。本文将介绍如何使用LoRA技术进行qwen模型的微调,以期优化模型的推理效果。LoRA,即Low-Rank Adaptation,是一种新颖的参数高效微调方法,它通过引入低秩分解来调整预训练模型的权重,显著减少了微调时所需的计算资源和存储成本。 在进行模型微调之前,首先需要准备相应的数据集文件。这些数据集需要覆盖所期望训练模型执行的任务领域,以确保微调后的模型能够适应具体的应用场景。例如,如果目标是进行自然语言处理任务,那么就需要准备大量的文本数据,包括标注数据和未标注数据。数据集的选择和质量对最终模型的性能有着直接的影响。 训练环境的搭建是模型微调的第二个重要步骤。由于使用了LoRA技术,因此需要配置支持该技术的深度学习框架和计算资源。在教程中,会提供详细的环境搭建指南,包括必要的软件安装、依赖项配置、以及可能需要的硬件配置建议。对于初学者而言,这一部分的教程能够帮助他们快速进入模型微调的学习状态,无需过多地担心环境搭建的问题。 接着,我们将详细解析LoRA微调的python代码。在代码中,会具体展示如何加载预训练的qwen模型,如何应用LoRA进行微调,以及如何在特定的数据集上进行训练。代码部分不仅包含模型的调用和微调,还包括了如何保存和加载微调后的模型,以及如何评估微调模型的效果。通过这些实际的代码操作,初学者可以清晰地理解模型微调的整个流程,并掌握相应的技能。 LoRA微调方法的核心优势在于其高效率和低资源消耗。在微调过程中,LoRA技术通过低秩分解来寻找最有效的权重更新方式,这意味着在更新模型时只需要对少量的参数进行调整。这样不仅节约了存储空间,也减少了训练时间,特别适合于资源受限的环境,如边缘计算设备或移动设备。 此外,本资源还特别适合初学者使用。它从基础的模型微调概念讲起,逐步深入到LoRA微调的具体技术细节。通过实例化的教程和代码,初学者能够循序渐进地学习并实践大模型微调技术。通过本资源的学习,初学者不仅能够理解模型微调的基本原理,还能掌握实际操作技能,并能够将所学应用到实际项目中去。 在总结以上内容后,本资源的实用性便不言而喻。无论是对于从事人工智能研究的专业人员,还是对于刚接触模型微调的初学者,本资源都提供了一个很好的起点,帮助他们快速理解和掌握LoRA微调技术,有效地优化模型的推理效果。通过这份资源,用户可以更容易地将先进的模型微调技术应用于自己的项目中,提升人工智能应用的性能和效率。
2025-05-26 10:42:15 132KB 人工智能 LoRA
1
实验1 建立不允许缺货的生产销售存储模型。设生产速率为常数k, 销售速率为常数r, k>r.在每个生产周期内T内,开始的一段时间( ),一边生产一边销售,后来的一段时间 只销售不生产,画出储存量 的图形。设每次生产准备费为 ,单位时间每件产品储存费为 以总费用最小为目标确定最优生产周期。讨论 和 的情况。 实验2 阅读实验教材第五章中的最速降线问题以及本目录中的参考材料,了解最速降线问题的原理和求解的方法。 实验3 阅读本目录中的铅球掷远问题的求解,完善该模型,给出该问题的完整数学模型,并利用Matlab进行求解。 【Matlab优化模型求解】 在数学模型的构建和求解过程中,Matlab是一个强大的工具,尤其在优化问题中,它提供了多种内置的优化算法和工具箱,使得模型的求解变得更为便捷。本实验主要涉及到三个实际问题,分别是不允许缺货的生产销售存储模型、最速降线问题和铅球掷远问题。 1. **生产销售存储模型** - **模型设定**:在生产销售存储模型中,生产速率k和销售速率r是常数,且k>r。生产周期T内,前一段时间一边生产一边销售,后一段时间仅销售不生产。每次生产准备费为c1,单位时间每件产品储存费为c2。目标是最小化总费用。 - **模型建立**:利用微积分,可以将储存量q(t)表示为时间t的函数,分两段:q(t)=(k-r)*t (生产销售阶段),q(t)=k*(T-t)-r*t (仅销售阶段)。根据图示,可以推导出最优生产周期T与k、r的关系k*r*T=k^2。 - **费用计算**:总费用C'包括生产准备费和储存费,C'(T)=[(k-r)^2*T]/2+c1。平均每天费用C(T) = C'(T)/T,分析k和r对费用的影响,当k>>r时,总费用增加,反之则减少。 2. **最速降线问题** - **问题原理**:这是一个经典物理问题,寻找质点从A到B下滑时间最短的曲线,称为最速降线。解这个问题需要利用变分法,通过函数极值和基本引理,得到最速降线的方程:x=c(t-sint), y=c(1-cost),其中c是待定参数,由边界条件确定。 - **摆线**:最速降线实际上是摆线,它是圆在直线上的滚动轨迹。通过选取不同半径的圆,摆线可以经过任何第一象限的点,包括点B(x2, y2)。 3. **铅球掷远问题** - **模型假设**:铅球抛出后沿抛物线运动,忽略空气阻力,已知初速度V,出手高度h,角度θ,重力加速度g。 - **模型建立**:分别计算铅球上升和下降的时间、高度,水平位移。铅球的水平距离R由初速度Vx和总时间t决定,其中Vx=V*sinθ,t=t1+t2,t1和t2分别是上升和下降时间,通过微分求解最优投掷角度。 在实际应用Matlab解决这些问题时,可以使用内置的优化函数如`fmincon`或`fminunc`来寻找目标函数的最小值。对于生产销售模型,可以设定T为变量,构造目标函数C(T)并求解。对于最速降线和铅球掷远问题,可能需要利用数值方法如四阶龙格-库塔法或牛顿法来求解方程组,或者直接对角度θ进行优化,以最大化投掷距离。 通过这些实验,学生不仅可以掌握Matlab的优化求解技巧,还能深入理解实际问题背后的数学模型和物理原理。同时,通过编写和运行Matlab程序,提高了解决实际问题的能力。
2025-05-07 23:40:25 2.52MB
1
Matlab实现BP神经网络K折交叉验证与Kfold参数寻优案例:优化模型性能的实用方法,Matlab实现BP神经网络K折交叉验证与Kfold参数寻优案例:优化模型性能的实用方法,Matlab实现BP神经网络K折交叉验证,Kfold寻参案例 ,Matlab; BP神经网络; K折交叉验证; Kfold寻参案例; 参数优化。,Matlab实现K折交叉验证BP神经网络寻参案例 BP神经网络,即反向传播神经网络,是人工神经网络的一种,主要用于分类和回归等机器学习任务。在实际应用中,为了提高模型的泛化能力和预测精度,K折交叉验证和参数寻优是不可或缺的步骤。K折交叉验证是指将原始数据集随机分为K个大小相似的互斥子集,每次用K-1个子集的合集作为训练集,剩下的一个子集作为测试集,这样可以循环K次,最终得到K个测试结果的平均值作为模型的性能指标。这种方法能有效评估模型在未知数据上的表现,避免过拟合现象的发生。 参数寻优,尤其是针对BP神经网络,主要是通过搜索算法找到最优的网络结构和权重参数。其中Kfold参数寻优是指在K折交叉验证的基础上,对每个训练集再进行K折交叉验证,从而对模型参数进行精细调优。Kfold寻参可以使用网格搜索、随机搜索或者贝叶斯优化等方法来实现。 在Matlab环境中实现这些功能,需要对Matlab编程语言和神经网络工具箱有较深的了解。Matlab提供了强大的函数库和工具箱,其中神经网络工具箱可以帮助用户快速搭建和训练神经网络模型。通过编写相应的Matlab脚本,可以方便地实现BP神经网络的构建、训练、测试以及K折交叉验证和参数寻优。 案例分析是理解理论和实践相结合的重要途径。本案例通过实际数据集的应用,展示了如何使用Matlab实现BP神经网络模型的构建,并通过K折交叉验证和参数寻优方法来提升模型性能。通过对比不同参数设置下的模型表现,分析和探讨了参数对模型性能的影响,从而找到最优化的模型配置。 文章中提到的“柔性数组”这一标签可能指的是一种数据结构或者编程中的数组应用技巧,但在神经网络和交叉验证的上下文中没有提供足够的信息来解释其具体含义。这可能是一个笔误或者是与案例分析不相关的独立研究主题。 本案例详细介绍了在Matlab环境下实现BP神经网络、进行K折交叉验证以及参数寻优的步骤和方法,通过实际操作提高模型性能,具有较高的实用价值和指导意义。文章强调了理论与实践相结合的重要性,并通过具体的案例分析加深了读者对这些概念的理解。
2025-05-07 19:37:24 2.85MB 柔性数组
1