在现代通信领域,阵列天线凭借其优异的性能被广泛应用于多种场景。本设计利用MATLAB编程,采用遗传算法对16元阵列天线进行优化设计,目标是实现副瓣电平低于-30dB且增益高于11dB的性能指标。 遗传算法是基于达尔文自然选择理论的一种优化算法,模拟生物进化过程,通过选择、交叉和变异等操作逐步优化问题解。其基本原理是:初始种群由编码的个体组成,每个个体代表一个潜在解。在每一代中,根据个体的适应度进行选择、交叉和变异操作。适应度高的个体更有可能被选中进入下一代,同时通过变异操作保留一定的种群多样性,防止算法过早收敛。选择操作采用轮盘赌策略,交叉操作通过随机配对个体并交换基因片段生成新个体,变异操作则以一定概率改变个体基因。 在本设计中,16元均匀直线阵的阵元间距为半波长,其辐射场特性由阵因子决定,而阵因子与阵元间的相位差密切相关。目标函数的设计旨在通过优化阵元的相位差,使天线的增益和副瓣电平满足设计要求。MATLAB源代码中,初始化了种群规模、选择概率、交叉概率、变异概率以及信号频率等参数,生成初始种群后,通过迭代优化逐步调整阵元相位差,最终达到优化目标。 仿真结果以增益方向图的形式展示,直观呈现了优化后的天线性能。通过分析增益和副瓣电平,验证了遗传算法在天线优化中的有效性,优化后的天线性能满足设计指标。本设计参考了遗传算法、阵列天线理论以及MATLAB编程的相关文献,为实际工程应用提供了有价值的参考。
2025-10-25 17:49:24 56KB 遗传算法 天线优化
1
本书深入探讨了多智能体系统在通信网络上的协同控制问题,重点介绍了最优和自适应设计方法。书中阐述了如何通过分布式协议确保所有智能体达成共识或同步,涵盖了一阶和二阶系统、队形控制及图拓ology的影响。此外,书中还探讨了最优控制和自适应控制在图上的实现,强调了局部和全局最优性之间的关系及其在实际应用中的挑战。通过实例和理论分析,本书为读者提供了理解和解决多智能体系统协同控制问题的全面指南。 多智能体系统的协同控制与优化设计是近年来系统控制领域的热点问题。智能体系统是由多个智能体组成的一个群体,每个智能体拥有一定程度的自治能力,通过相互之间的协调与合作来完成复杂的任务。在这一领域中,协同控制主要是指智能体之间如何通过分布式协议达成一致的行为,即达成共识或同步。优化设计则涉及如何构建最优的控制策略,使得系统的整体性能达到最佳。 本书深入探讨了多智能体系统在通信网络上的协同控制问题,重点介绍了最优和自适应设计方法。所谓最优设计,即是在给定性能指标下,寻找可以使系统性能最优化的控制策略。而自适应设计则是指系统能够在变化的环境或参数下,自动调整自身控制策略,以适应外部变化。 书中详细阐述了分布式协议如何确保所有智能体达成共识或同步,并且覆盖了不同类型的系统模型,例如一阶系统和二阶系统。队形控制和图拓扑的影响也是讨论的关键内容,因为它们直接关系到智能体如何在空间中有效地组织和协同工作。 此外,最优控制和自适应控制在图上的实现也被细致探讨。这涉及到如何将最优控制和自适应控制理论应用到多智能体系统的网络结构上,以及这些控制策略如何在局部和全局水平上影响系统的最优性。这些理论与实际应用中的挑战紧密相连,书中通过实例和理论分析,为读者提供了理解和解决多智能体系统协同控制问题的全面指南。 本书的作者们包括弗兰克·L·刘易斯(Frank L. Lewis)、张红伟(Hongwei Zhang)、克里斯蒂安·亨格斯特-莫夫里克(Kristian Hengster-Movric)和阿比吉特·达斯(Abhijit Das)。他们分别来自德克萨斯大学阿灵顿分校UTA研究所和西南交通大学电气工程学院、以及Danfoss Power Solutions(US)公司。该书由Springer出版,是通讯与控制工程系列的一部分。 在版权方面,本书受到国际版权法律的保护。出版社保留了包括翻译权、翻印权、插图使用、朗诵权、广播权、微缩复制或任何其他物理方式复制、传输或信息存储和检索、电子改编、计算机软件,或通过现在已知或今后开发出的类似或不相似方法的权利。但是,为了评论、学术分析或专门为在计算机系统中执行和使用的材料,可以简短摘录。 本书对于希望深入了解多智能体系统协同控制和优化设计的读者来说,是极具价值的参考资料。它不仅涵盖了理论的全面讨论,也提供了实际应用的案例分析,能够帮助读者在工程实践与理论研究中找到平衡点。
2025-10-22 12:20:33 21.49MB multi-agent systems control theory
1
文章探讨了基于遗传算法对斜齿轮进行多目标优化的方法,旨在同时减轻齿轮的质量并降低其传动中的振动及噪音。首先介绍了遗传算法的基本原理和运算流程,包括编码、初始化种群、适应度计算、选择、交叉、变异等关键步骤。接着建立了齿轮减振降噪和轻量化的优化目标函数,通过双质块双弹簧振动模型和齿轮体积计算公式推导出具体的数学表达式。然后构建了多目标优化函数,采用加权系数法将两个子目标函数合并为单一目标函数。确定了设计变量和约束条件,包括模数、螺旋角、齿数、齿宽系数等参数的取值范围以及接触应力和弯曲应力的性能约束。最后利用MATLAB优化工具箱中的遗传算法实现了优化过程,并对优化前后的齿轮性能数据进行了对比验证,结果显示齿轮的质量减少了39.6%,振动和噪音也有所改善,证明了优化设计方法的有效性。;
2025-10-19 16:09:13 1.55MB 遗传算法 多目标优化 MATLAB
1
本文研究的是基于贪心算法的黄山景区旅游路线优化设计,目的是为了在有限的时间内,推荐一条能够让游客满意度最高的旅游路线。黄山景区的景点众多且分布分散,因此,传统的旅游路线推荐方法往往无法满足游客的个性化需求,即游览更多的景点,同时考虑到时间和金钱上的预算。为了解决这一问题,作者提出了一个基于游客满意度最大化的旅游路线优化模型,并采用了贪心算法来求解最优旅游路线。 文章通过研究背景部分介绍了黄山景区的基本情况,强调了根据不同游客的个性化需求推荐旅游线路的重要性。现有文献的不足之处在于未能全面考虑游客的时间预算、资金预算、身体状况等多方面约束条件。与以往研究不同,本文不仅考虑了游客的时间和预算,还加入了精力消耗的考虑,这使得推荐的路线更加个性化和实际。 在模型建立部分,文章提出了一系列的假设条件,以便于进行模型的简化和量化分析。这些假设条件包括游客的资源(时间、预算、精力)有限并且可以量化,游客对景点的偏好可以通过分值来量化,景区的交通情况会影响游客的精力消耗和通行时间等。通过这些假设,文章将游客偏好、金钱预算和精力等因素引入到模型中,并且利用贪心算法来模拟计算出使得游客满意度最高的游览路线。 文章的模型假设部分提出了对贪心算法的使用,通过对景点的游览时间和精力消耗进行量化,从而得到了一种新的指标W。这一指标是基于对时间、精力和金钱的加权求和计算得出的。作者强调了精力的主观性,并提出了精力的计算方法,即在游客在景点间的移动过程中,将精力消耗值转化为定量分析,并对不同类型游客人群给予不同的初始值。 在模型的求解部分,文章详细描述了使用贪婪算法对旅游路线进行优化的步骤。通过贪心算法在每个游览日中生成当日的游览路线。接着,提出单位权满意度的概念,通过满意度值与边的权值之间的关系来判断最佳路线。最终,通过动态规划方法来解决这一问题,找出一条在各种约束条件下游客满意度最高的游览路线。 文章还提到了通过查询相连景点之间的游客步行时间和游览时间,结合景点间的高程、直线距离和路程来量化游客的精力。此外,文章还指出了游客的精力值可以根据年龄体能不同给予不同的初始值,并且在模型中还考虑了金钱和精力在不同路线上的影响权重。 文章指出了模型的局限性,比如未考虑天气变化、突发事件等因素,以及旅游时间受限于景区开放时间。但是,总体而言,该模型提供了一种新的旅游路线优化方法,它不仅能够个性化地满足游客的需求,还能够在实际中被应用和检验。 本文提出的基于贪心算法的黄山景区旅游路线优化设计,是一个综合性解决方案,它通过引入多属性评价机制和多约束条件下的贪心算法,有效地优化了游客在黄山景区的旅游路线。这种算法不仅提高了游客的满意度,还能在有限的时间和预算内,使得游客获得最佳的旅游体验。
2025-10-16 18:51:10 150KB
1
### 二维拓扑优化设计的后处理和平滑清晰几何图形的提取 #### 背景与简介 拓扑优化(Topology Optimization, TO)是一种数学方法,用于在预定义的设计空间内对材料区域进行优化,使其在给定的要求和边界条件下满足特定的目标。这种优化能够大大缩短产品的开发周期,并且还能在满足特定目标的同时减少生产过程中的材料用量。二维拓扑优化尤其适用于平面结构的优化设计,如桥梁、框架等。 #### 问题定义 对于二维拓扑优化而言,一个简单的代码比复杂的商业软件更易于操作和理解。例如,经典的88行MATLAB代码就是一个很好的起点,它支持多种载荷情况,具有网格独立性,并且计算速度快。此外,该代码已经被广泛验证为理解和学习拓扑优化的一个优秀工具。然而,该代码也有其局限性,如处理复杂边界条件的能力较弱等。 #### 方法论 本研究主要聚焦于拓扑优化后的处理流程,即如何从优化结果中提取平滑且清晰的几何图形,并将其转换成CAD模型,以实现设计到制造的一体化。具体包括以下几个方面: 1. **拓扑优化**:采用典型的拓扑优化方法,如SIMP法(Solid Isotropic Material with Penalization)、水平集法等进行结构优化设计。 2. **几何平滑**:对拓扑优化的结果进行后处理,以去除不连续性和噪声,提高几何形状的质量。 3. **几何提取**:从优化结果中提取边界轮廓,形成清晰、准确的几何形状。 4. **设计结果CAD重构**:将提取的几何形状导入CAD系统,生成可用于制造的精确模型。 5. **边界提取**:识别并提取出优化结果中的边界,以确保模型的完整性和准确性。 #### 结果分析 为了评估所提出的方法的有效性,本研究选取了几个典型的二维结构案例进行验证,包括但不限于: 1. **材料属性**:定义材料的弹性模量、泊松比等基本属性,这些参数将直接影响优化结果。 2. **MBB梁**:通过优化不同载荷条件下的MBB梁结构,测试方法的有效性。 3. **T型梁**:进一步验证方法在复杂结构上的适用性。 4. **额外细节**:探讨诸如网格尺寸、惩罚因子等因素对优化结果的影响。 5. **结果度量**:使用几何偏差、符合度和体积分数等指标来评价后处理的效果。 6. **限制因素**:讨论现有方法可能遇到的挑战和局限性,为未来的研究提供方向。 7. **展望**:基于当前研究的基础上,提出未来可能的发展方向和技术改进措施。 #### 实现细节 所有的编程工作均使用MATLAB完成,并采用了基于图像的后处理方法。这种方法的优势在于可以直接从二维优化结果中提取信息,并且可以最小化几何偏差、符合度和体积分数的变化。通过对多个数值实例的测试,我们能够全面评估该方法的性能、局限性和数值稳定性。 #### 总结 本文提出了一种有效的二维拓扑优化后处理方法,旨在从优化结果中提取平滑且清晰的几何图形,并将其重构为CAD模型,从而实现设计到制造的一体化。通过几个典型案例的分析,证明了该方法的有效性和可行性。未来的研究将进一步探索如何提高优化效率,以及如何更好地解决实际工程应用中的复杂问题。
2025-09-17 11:56:42 1.06MB 拓扑优化 边界提取 设计制造
1
斯特林发动机是一种将外部热源的热量转化为机械功的装置,具有外部加热、闭式循环、往复活塞式等特点。由于其高效能、低污染的特性,广泛适用于多种燃料。斯特林发动机的结构主要分为α、β、γ三种类型,其中α型斯特林发动机在本文的讨论范围内。 α型斯特林发动机的工作原理是基于斯特林循环进行的,该循环包括四个主要过程:定温压缩过程、定容吸热过程、定温膨胀过程以及定容放热过程。在斯特林循环的定温压缩和定温膨胀过程中,通过变化的气体体积和温度,实现了能量的循环利用。 为了获得α型斯特林发动机的最大对外循环功,多目标优化设计显得尤为重要。在设计优化模型时,本文采用了线性加权评价方法,并借鉴群体AHP理论方法来解决曲柄连杆机构的连杆比最佳范围问题。群体AHP(层次分析法)是一种定性和定量相结合的、系统的、层次化的分析方法,通过对多因素多层次的分析,能够确定各因素的权重,从而用于多目标决策分析。 曲柄连杆机构是斯特林发动机的核心组成部分之一,其设计直接影响到发动机的功率输出。曲柄连杆机构的优化设计需要考虑连杆比这一关键参数。连杆比是指曲柄连杆机构中连杆长度与曲柄半径的比值。通过优化连杆比,可以使得膨胀腔和压缩腔的容积变化最大化,从而使得发动机的对外循环功最大。 在优化设计的过程中,需要建立一个多目标优化函数,并通过线性加权的方法来求解该函数,以得到最佳的连杆比范围。该范围随后被用作约束条件,再以连杆机构的连杆比为变量,建立优化设计模型。通过实例求解,可以具体得到α型斯特林发动机曲柄连杆机构的最佳设计参数,从而实现最大的循环功。 斯特林发动机在工业上的应用非常广泛,尤其在需要高效率和低污染的场合。这种发动机不仅适用于电力生成,还能用于驱动其他机械设备,比如泵、压缩机等。在设计斯特林发动机时,充分考虑其结构特性以及工质的选择,对于提升其整体性能至关重要。 在本文中,作者们通过建立α型斯特林发动机的优化设计模型,并以实例的形式进行了求解验证,展示了通过优化设计提高发动机性能的潜力。此研究不仅对斯特林发动机的设计提供了理论依据,也为工程实践提供了技术支持。 总结而言,α型斯特林发动机曲柄连杆机构的优化设计模型,通过数学建模和多目标优化方法,对斯特林发动机的性能提升有着极其重要的意义。研究结果对斯特林发动机的研发和应用提供了新的思路和方法,有望推动该领域技术的进一步发展。
2025-09-14 18:08:12 571KB 首发论文
1
### 倍压整流电路电容参数的优化设计 #### 摘要与背景 本文探讨了倍压整流电路中的电容选择及其参数优化的重要性。倍压整流电路是一种特殊的电路配置,能够将输入的低交流电压转换成较高的直流电压。这种电路常用于需要较高电压但电流需求较小的应用场景中。电路主要由电压源、变压器、电容器和整流二极管组成。通过合理选择电容值,不仅可以改善电路性能,还能有效降低成本。 #### 倍压整流电路的工作原理 倍压整流电路的基本工作原理在于利用电容器存储和释放电荷的能力来提升电压水平。当输入交流电压处于正半周期时,部分电容器会被充电至电压峰值;而在负半周期,这些电容器与新的交流电压共同作用,进一步提升电压。随着周期的不断重复,电容器逐渐被充满电,最终输出的直流电压远高于输入交流电压峰值。 #### 电容参数的选择及优化 1. **电容的选择**: - 在倍压整流电路中,不同位置的电容器起着不同的作用,因此它们的选取标准也有所不同。 - 对于输入端的第一组电容器(C1),它们主要负责将交流电压转换为脉动直流电压,因此需要具备较大的容量以平滑电压波动。 - 随后的电容器(C2、C3等)主要用于电压提升阶段,其容量选择需要平衡成本与性能的需求。 2. **电容参数的优化**: - 通过仿真分析,可以发现不同电容器的参数变化对整个电路性能有着显著影响。例如,降低某些特定电容器的值可以在一定程度上减少成本,同时不影响整体性能。 - 仿真结果显示,当电容值较大时,电路进入稳态较快且纹波较小,但这也意味着成本增加。反之,减小电容值虽然可以降低成本,但可能会影响稳态时间和纹波大小。 #### 仿真分析案例 文中给出了具体的仿真案例,通过对比不同电容值下的电路表现,验证了优化电容参数的可能性: - 当所有电容值统一选择为较大的值(如47μF)时,电路能快速进入稳态,且输出电压稳定,纹波较小。 - 当改变部分电容器的值(如将C1设为10μF,其他保持47μF不变)时,虽然电路进入稳态的时间有所延长,但仍能维持较高的输出电压。 - 进一步改变其他电容器的值(如C2设为10μF),可以看到虽然稳态时间有所增加,但总体而言,输出电压和电流仍然可以保持在一个合理的范围内。 #### 结论 通过对倍压整流电路中电容参数的优化设计,不仅能够实现电路性能的最大化,还可以有效地控制成本。具体而言,通过调整不同位置的电容器容量,可以在满足性能需求的同时,选择性价比较高的电容类型。此外,仿真工具的使用对于指导实际电路的设计至关重要,它可以帮助工程师快速找到最优的电容参数组合,从而实现高效、经济的电路设计。 综上所述,倍压整流电路中电容参数的选择与优化是一个复杂但非常重要的过程。通过理论分析与仿真验证相结合的方式,可以有效地指导实际电路的设计与优化,进而推动该类电路在各种应用场景中的广泛应用和发展。
2025-09-04 10:26:07 428KB 倍压整流 电容参数
1
目前光学薄膜设计大多为单目标寻优设计,难以满足一些复杂光学薄膜的需求。构建出光学薄膜的多目标优化膜系,设计一种新型、高效的多目标遗传算法(DMOGA)用于模型的求解。该算法使用基于支配关系的选择策略、基于动态聚集距离削减非支配解集规模、动态调整算法运行参数等策略使得DMOGA不仅容易实现,而且能得到较好分布性和逼近性的解。将DMOGA应用于光学薄膜的优化设计实例中,取得良好的效果,表明了多目标优化在光学薄膜设计中的有效性以及应用前景。
2025-08-02 18:27:05 1.72MB 优化设计 遗传算法 thin
1
电流检测功能电路设计是电子工程中的一个重要领域,它涉及到电流的准确测量、转换、放大和处理。本文详细介绍了电流检测电路的设计要求、原理、结构、优化、仿真及测试结果。以下是根据给定文件信息总结的知识点: 1. 电流检测技术概述: 电流检测主要用于监测电路中的电流大小,常见的方法包括使用互感器、分流器等将电流信号转换为电压信号。然而,随着电子设备向小型化、低功耗方向发展,小电流检测技术的需求日益增加,传统的检测方法可能无法满足要求,因此需要开发新的电流检测技术。 2. 电流检测电路设计要求: 文中提到的电流检测电路设计要求包括:能够将大电流信号缩小至较小的电流信号输出;在输出较小电流的同时保持输入电流值不变;实现电流信号缩小比例达到3600倍;具备较好的线性度和稳定性。 3. 电流检测电路结构设计: 由于传统电阻检测和电流互感器检测方法在小电流检测中的限制,本设计选择电流镜结构作为电流检测电路的核心。电流镜结构利用MOS管(金属氧化物半导体场效应晶体管)作为主要元件,因为它们可以在精确复制电流的同时,避免工艺和温度变化对电流值的影响。 4. 电流镜工作原理: 电流镜的工作原理是通过设定MOS管的宽度比例来调节电流的大小,实现对输入电流的精确复制。在电流镜结构中,输出电流(Iout)与参考电流(IREF)的比值由晶体管尺寸的比率决定,理论上可实现精确的电流缩放比例。 5. 设计优化与仿真: 电流镜中的晶体管通常采用相同的栅长以减小误差,同时也需要对晶体管的宽度进行细致的调整以确保电流的精确比例。优化过程中,通过对比不同栅长和晶体管宽度尺寸电路的仿真结果,选择了L=1μm的栅长,以实现最佳的线性度和精度要求。 6. 版图设计和工艺考量: 版图设计时应尽量采用对称结构,考虑到版图面积和NMOS管与PMOS管数量对电路性能的影响。版图面积会影响晶体管的宽度,而晶体管数量会影响电流变化的精度。通过仿真确定了最终的晶体管尺寸和结构。 7. 仿真测试结果: 仿真测试是电路设计验证的重要步骤,通过在电路中增加不同阻值的负载,并进行仿真测试,可以观察电路的输出特性,验证电路设计是否满足设计要求。 通过以上知识点的介绍,可以看出电流检测功能电路设计不仅需要对电路原理有深入的理解,还需要考虑到实际应用中的工艺要求、温度影响、精度要求以及版图设计等因素。设计电流检测电路的目标是确保检测精度、信号稳定性及电路的可靠性,从而满足电子系统对电流监测的需求。
2025-07-30 09:59:22 77KB 电路设计 电流检测 优化设计
1
内容概要:本文档详细介绍了gm/Id设计方法工艺曲线仿真的具体步骤。首先确保电脑已安装Hspice及Spice Explorer,接着在Cadence中创建原理图并设置相关参数,利用ADE仿真环境生成Spice网表。重点在于对网表进行编辑,包括设置VGS和L的扫描范围与步长、加入.probe语句以准确测量电流、调整.option选项以优化仿真效果等。最后使用hspice运行仿真,并通过Spice Explorer查看和修改gm/Id曲线簇。 适合人群:有一定电路设计基础,特别是熟悉MOS管特性和仿真工具使用的电子工程技术人员。 使用场景及目标:①帮助工程师掌握gm/Id设计方法的具体实现过程;②通过实际操作加深对gm/Id特性及其应用的理解;③为后续基于gm/Id的设计提供数据支持和技术积累。 阅读建议:读者应按照文中给出的操作步骤逐一实践,同时注意文中提到的一些容易出错的地方,如.probe语句的选择和.option选项的设置等,确保仿真结果的准确性。
2025-07-29 10:25:15 611KB Hspice Spice仿真 电路设计
1