针对 Prony 算法辨识传递函数的模型阶数选取问题,首先选取一个阶数初始值, 然后在模型阶数取初始值条件下对输出信号进行 Prony 分析,最终依据 SNR 值及留数模值,得到 适合的模型阶数。对典型传递函数的仿真分析验证了所提方法的有效性. Prony算法作为一种高效的信号处理工具,在动态系统辨识中占据了重要地位。该算法通过构建信号的指数函数线性组合模型来拟合离散采样数据,从而提取出系统的频率、幅值、衰减因子和初相位等关键参数。凭借其高效率和精确度,Prony算法不仅适用于仿真数据的分析,在实时在线系统分析中也表现出了卓越的性能。在电力系统领域,Prony算法的应用领域尤为广泛,包括低频振荡的分析、电能质量的评估、电力系统模型和故障的辨识以及电力系统稳定器的设计等。 尽管Prony算法的应用前景广阔,但在使用该算法对传递函数进行辨识时,确定一个合适的模型阶数成为了关键的一步。模型阶数不仅影响着系统的动态特性描述,而且还关系到最终模型的精确性。如果模型阶数选择不当,过高或者过低,都有可能造成模型的失真。通常,确定模型阶数依赖于经验或者直觉判断,但这种方法并不总能确保得到最优的模型。 为了解决这一问题,相关的研究提出了基于信号噪声比(SNR)和留数模值的新型模型阶数选取方法。SNR值反映了模型对于实际数据的拟合程度,一个较高的SNR值表明模型与实际数据更加吻合,而留数则体现了各个指数项对信号形成的影响和贡献程度。在这种新方法中,研究者首先设定一个模型阶数的初始值,然后进行Prony分析,根据这个阶数下的输出信号来评估SNR值和留数模值,以此来决定最佳的模型阶数。 仿真实验验证了该方法的有效性。通过比较不同阶数模型的SNR值和留数模值,可以确定最佳的模型阶数,从而使模型更加准确地反映实际系统的动态特性。这项研究成果对于那些难以建立物理模型或者系统复杂度较高的情况尤为重要。利用Prony算法结合新的模型阶数选择策略,可以创建更为精确地逼近实际系统行为的数学模型。 此外,该方法对于理解和控制复杂的工程系统具有显著的实际意义。特别是在电力系统领域,Prony算法以及模型阶数选取策略的优化,不仅能够提高系统动态分析的精度,还能够为电力系统的实时监控和故障预测提供科学依据,从而有效提升电力系统的稳定性和可靠性。 Prony算法在传递函数模型阶数辨识中的应用展现了其在系统辨识中的巨大潜力。通过利用SNR值和留数模值来优化模型阶数,不仅提高了辨识精度,而且使得模型能够更准确地捕捉系统的动态特性,对于电力系统的安全稳定运行具有不可忽视的贡献。未来,随着该技术的进一步研究和应用,我们可以预见,Prony算法将在系统辨识领域发挥更加重要的作用,并在其他领域找到更为广泛的应用。
2025-04-10 23:15:01 1014KB 人工智能
1
"双环控制下的Buck变换器研究:传递函数建模与主功率补偿网络设计",Buck变器双环控制:平均电流和峰值电流控制。 主功率建模后得到传递函数,从而设计不同控制模式下的补偿网络,以及峰值电流控制下次谐波振荡时斜坡补偿斜率要求。 补偿器设计由零极点的传函到运放或者TL431+光耦都可以。 ,Buck变换器;双环控制;平均电流控制;峰值电流控制;传递函数;补偿网络;斜坡补偿斜率;补偿器设计,Buck变换器双环控制策略研究:传递函数与补偿网络设计 双环控制系统作为电力电子领域的一项核心技术,其在Buck变换器中的应用已成为研究热点。Buck变换器是一种直流-直流转换器,主要用于降低直流电压。在双环控制系统中,Buck变换器的控制方式主要分为平均电流控制和峰值电流控制两种模式。这两种控制模式各有其特点,平均电流控制模式能够有效地减少输出电压纹波,而峰值电流控制模式则能够提高系统的动态响应速度和稳定性。 在对Buck变换器进行双环控制的研究中,首先需要进行主功率建模,即根据变换器的电路结构和工作原理,推导出其数学模型。通过对电路元件的电压、电流关系进行分析,可以得到Buck变换器的传递函数。传递函数是系统动态特性的数学表达,它描述了系统输出量对于输入量的响应关系。在传递函数的基础上,研究者可以进一步设计出适合不同控制模式的补偿网络。 补偿网络的设计是双环控制策略中的关键环节。补偿网络的作用是改善变换器的频率响应特性,提高系统稳定性和快速性。补偿网络设计通常包括零极点配置,零点用于提升系统增益,极点则用于增强系统阻尼。通过适当配置零极点,可以对Buck变换器的频率响应进行优化,从而达到理想的控制效果。 在峰值电流控制模式下,由于次谐波振荡问题的存在,需要引入斜坡补偿机制。斜坡补偿斜率的选择对于控制性能有着重要影响。斜坡补偿能够防止电流控制环进入不稳定状态,提高电流控制环的抗干扰能力和稳定性。 补偿器设计是实现补偿网络的关键步骤。在设计补偿器时,可以从零极点的传递函数出发,选择不同的实现方式,例如使用运算放大器(运放)或者利用TL431+光耦组合。运放和TL431+光耦是电力电子领域常用的补偿器实现元件,它们各有优势和局限性,选择时需要根据具体应用场合和性能要求进行权衡。 Buck变换器双环控制策略的研究不仅限于理论分析和仿真验证,还包括实际电路的设计与实验。通过对变换器性能的深入研究,可以进一步探索更多创新的控制策略和优化方法,为电源管理领域的发展贡献力量。 双环控制系统在Buck变换器中的应用表明了电力电子技术的复杂性和多样性。随着技术的不断进步,新的控制理论和方法将不断涌现,为电力电子系统提供更加高效、稳定和可靠的控制解决方案。
2025-04-07 19:30:50 888KB
1
参考博文,如何快速的获取电路的传递函数 https://blog.csdn.net/weixin_42665184/article/details/126029970?spm=1001.2014.3001.5502
2024-08-29 15:07:28 27KB Simulink
1
使用方法参考下面的博文链接,可以仿真电路并得到一般电路的传递函数表达式 https://blog.csdn.net/weixin_42665184/article/details/126391065?spm=1001.2014.3001.5502
2024-04-15 17:46:29 308B 电路仿真 传递函数
1
基于神经网络的自适应PID控制器 通过将RBF(BP)神经网络和PID控制器相结合,建立了神经网络PID控制器,采用传递函数进行系统建模,通过自动调整PID参数,实现了对方波信号的跟踪。 程序有注释
2024-04-14 13:38:32 59KB 神经网络
1
m文件一个 建立了车辆双质量2自由度悬架模型,传递函数 绘制传递函数曲线 通过传递函数计算时域响应 多阻尼传递曲线对比 更详细说明可关注博主博客
2024-01-04 20:52:23 1KB 传递函数
1
MATLAB/Simulink搭建电动助力转向模型,EPS模型,包括PID控制算法,传递函数回正控制,有完整的模型公式搭建过程,可直接仿真出图像,参数自己数据齐全,建模过程详细! 视频操作,截图说明,简单易懂,一一对应。 电动助力转向系统控制系统 电动助力转向系统被控系统 PID控制算法 控制策略 软件在环仿真测试 详细计算步骤,公式搭建过程,仿真结果 资料齐全,参数具备,完整过程。
2024-01-03 13:36:44 209KB matlab
1
c2d_euler 使用前向和后向Euler方法将连续传递函数转换为离散传递函数。 句法 Hz = c2d_euler(Hs,T,'forward') Hz = c2d_euler(Hs,T,'backward') 描述 Hz = c2d_euler(Hs,T,'forward')返回离散传递函数Hz该离散传递函数Hz是通过将正向Euler(即正向差)变换应用于连续传递函数Hs ,其中T是采样周期。 Hz = c2d_euler(Hs,T,'backward')返回离散传递函数Hz该离散传递函数Hz是通过将反向Euler(即反向差)变换应用于连续传递函数Hs ,其中T是采样周期。 附加文档和示例 有关其他文档和示例,请参见“ DOCUMENTATION.pdf”。
2023-10-02 00:02:19 186KB matlab
1
LCL滤波器传递函数(阻抗法)推导-Bing
2023-08-31 10:09:41 171KB LCL滤波器
1
(1)台体运动方程式 在不考虑台体绕稳定轴的阻尼系数和弹性约束的情况下,有 Me(s) α(shTT JpS- 式中 Jp一一台体及其附件相对输出轴的转动惯量。 (2) 浮子积分陀螺仪传递函数 旦旦2 H/C 一旦L α(s)-ts+1-JhG (3) 平台控制器传递函数为系统待选定的参数,设 在 s = 0 时,以 s) = C) 。 (4) 直流力矩电机传递函数 f一 (s二二~一 = G创(sυ) θ (s) 在实际应用中,可认为是一非周期环节 且坠) C2 eμ s) - rs + 1 (5.2. 1) (5.2.2) (5.2.3) (5.2.4) 考虑到浮子积分陀螺仪的陀螺效应,以及引起陀螺漂移的干扰力矩,可忽略力矩电机中的 反电势效应。系统的方块图可由图 5.10 给出。 在第三章我们给出用于捷联惯导系统浮子积分陀螺的一组参数,对于平台系统用浮子积 分陀螺的时间常数 J/C 为毫秒级。对于平台系统所用直流力矩马达,已采用永磁式马达,在一 般工程应用旋转速率下,马达的反电势可以忽略,马达的传递函数还可进一步简化。 1∞ 我们对系统做如下分析。 1.设 Mβ = O , MjY 或 My 不等于零。 由图 5.10 可简化为图 5.11 的形式。
2023-04-02 08:57:41 6.85MB 惯性导航 邓正隆
1