基于藤Copula方法的持续期自相依结构以及DaR估计,叶五一,李磊,本文基于Copula方法对由高频分笔数据得到的交易量持续期进行了研究。应用多元藤Copula方法对连续几个交易量持续期之间的自相依结构进
2025-09-16 11:56:50 961KB 首发论文
1
基于Carsim与Simulink联合仿真的分布式驱动车辆状态估计模型研究:轮胎力观测与UKF SRCKF算法的鲁棒性提升,基于Carsim和Simulink联合仿真的分布式驱动车辆状态精确估计模型:UKF SRCKF算法与ASMO轮胎力观测器的融合应用,【 分布式驱动车辆状态估计模型】基于Carsim和simulink联合仿真,首先建立分布式驱动车辆轮毂电机模型,并使用pid对目标速度进行跟踪,随后在使用级联滑模观测器(ASMO)和车轮运动模型对轮胎力进行观测的基础上,使用UKF SRCKF算法对侧向车速,纵向车速,横摆角速度,质心侧偏角进行估计。 不同于基于七自由度模型的状态估计的是使用轮胎力观测器代替建立轮胎模型,防止迭代形式的误差累积(轮胎模型需要估计量作为输入,估计不准轮胎模型的输出相应误差就大);此外为了解决Cholesky分解只能处理正定矩阵的问题,使用Utchol分解法在不影响估计效果的同时提升算法的鲁棒性。 ,核心关键词:分布式驱动车辆;状态估计模型;Carsim和simulink联合仿真;轮毂电机模型;PID控制;级联滑模观测器(ASMO);UKF SRCKF算法
2025-09-15 10:48:38 2.74MB scss
1
在计算机视觉领域,运动估计是一项关键技术,特别是在学生竞赛如AUVSI SUAS(美国无人水下航行器系统学生竞赛)中。MATLAB作为一种强大的编程环境,常被用于开发和实现这种复杂的算法。本资料包“matlab开发-学生竞赛运动估计的计算机视觉”可能包含了用于训练参赛队伍进行运动估计的代码、数据和教程。 运动估计是计算机视觉中的一个核心问题,其目的是通过分析连续的图像序列来推断场景中物体或相机的运动。这一过程对于理解和重建动态环境至关重要,它涉及图像处理、几何光学和优化理论等多个领域。在AUVSI SUAS竞赛中,运动估计可以帮助无人水下航行器理解自身和周围环境的运动状态,从而更准确地导航和执行任务。 51c4701这个文件可能是一个特定版本的代码库或者项目里程碑,它可能包括以下几个部分: 1. **源代码**:MATLAB代码实现不同的运动估计算法,如光流法、块匹配、卡尔曼滤波、粒子滤波等。这些算法可以用于计算相邻帧间的像素级或物体级别的运动矢量。 2. **数据集**:包含用于训练和测试的图像序列,可能来自于实际的航拍或水下视频。这些数据集有助于验证和优化算法性能。 3. **教程和文档**:解释如何使用提供的代码以及运动估计的基本概念。这些文档可能包括步骤说明、示例应用和常见问题解答。 4. **结果可视化**:可能包含用以展示运动估计结果的MATLAB图形,如运动轨迹图、残差分析等,帮助理解和评估算法效果。 5. **实验与评估**:文件可能包含实验设置、参数调整记录以及性能指标,比如均方误差(MSE)、平均绝对误差(MAE)等,用于比较不同算法的优劣。 学习和掌握这些内容,学生不仅可以提升在AUVSI SUAS竞赛中的竞争力,还能在更广泛的计算机视觉和机器人领域打下坚实的基础。MATLAB的易用性和丰富的工具箱使其成为教学和研究的理想平台,同时,通过解决实际问题,学生也能将理论知识转化为实践技能。因此,深入理解并运用这个资料包中的内容,对于提升学生的动手能力和创新能力具有重要意义。
2025-09-14 23:52:54 14.1MB 硬件接口和物联网
1
内容概要:本文深入探讨了电池二阶等效电路模型(2RC ECM)及其在电池管理系统(BMS)中的应用。文中介绍了2RC ECM的基本结构,包括开路电压源、内阻和两个RC支路,并详细解释了如何使用最小二乘法进行参数辨识,以及如何用扩展卡尔曼滤波(EKF)进行SOC估计。同时,提供了相应的Python代码示例,帮助读者理解和实现这两个关键过程。此外,还提到了相关参考文献,为深入研究提供理论支持。 适合人群:从事电池管理系统开发的研究人员和技术人员,尤其是对电池建模和状态估计感兴趣的工程师。 使用场景及目标:适用于需要精确模拟电池行为和估计电池荷电状态的实际工程项目。通过学习本文,读者可以掌握2RC ECM的构建方法,学会使用最小二乘法和EKF进行参数辨识和SOC估计,从而提高电池管理系统的性能。 其他说明:提供的代码仅为示例,在实际应用中需要根据具体电池特性和实验数据进行调整和优化。
2025-09-11 13:41:25 407KB
1
Matlab领域上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-09-10 09:49:20 7.39MB matlab
1
内容概要:本文详细介绍了一个使用 C++ 结合 OpenCV 部署 YOLOv11-Pose 姿态估计 ONNX 模型的实例项目。该项目不仅能实现实时的人体姿势估计功能还让用户可根据自身需求调整各种检测指标如置信度门限。同时,文中详细介绍了项目背景、特点、改进方案、必要的注意事项及其具体的实现步骤包括了所需数据的格式和预处理流程并且提供了完整且注释详尽的样例源代码帮助新手开发者快速搭建起自己的实时姿态估计系统。 适用人群:具备一定 OpenCV 操作经验的研究员和软件开发者。 使用场景及目标:在诸如健身指导、舞蹈训练、人机交互等具体情境中自动捕捉与跟踪人体的动作与姿态。 额外说明:由于本方案使用ONNX模型格式,使得将同一模型移植到多种不同软硬件平台变得更加便利。
2025-09-08 10:07:14 36KB OpenCV YOLO
1
毫米波雷达多普勒估计是现代雷达系统中的关键技术之一,特别是在自动驾驶、无人机导航、目标识别等领域有着广泛应用。本文将深入探讨毫米波雷达的工作原理、多普勒效应以及在Matlab环境下的仿真方法。 毫米波雷达使用的是频率在毫米级别的电磁波,通常在30至300GHz之间。这一频段的电磁波具有穿透力强、分辨率高、体积小等优点,适合在复杂的环境中进行精确的目标探测和跟踪。 多普勒效应是雷达系统中用于计算目标相对速度的关键概念。当雷达发射的电磁波遇到移动目标时,反射回来的信号频率会发生变化,这种频率变化就是多普勒效应。根据多普勒频移,我们可以推算出目标相对于雷达的接近或远离速度。 在Matlab中实现毫米波雷达的多普勒估计,通常包括以下几个步骤: 1. **信号模型建立**:首先需要构建雷达发射和接收的信号模型,包括脉冲序列、调制方式(如线性调频连续波LFMCW)等。 2. **多普勒处理**:通过快速傅里叶变换(FFT)对回波信号进行处理,以提取多普勒频移。这一步骤通常涉及窗函数的选择和匹配滤波器的应用,以提高信噪比和频率分辨率。 3. **速度估计**:从多普勒频谱中找出峰值,对应的就是目标的速度。可能需要进行多普勒平滑或者动态门限检测来抑制噪声和虚假目标。 4. **角度估计**:结合多径传播和天线阵列的特性,可以实现角度估计算法,如基于波达方向(DOA)的方法,例如音乐算法(MUSIC)或根最小方差(Root-MUSIC)。 5. **仿真验证**:通过与理论值对比,评估算法的性能,如速度估计精度、角度分辨率等。 在"Doppler-radar-simulation-model-master"这个压缩包中,可能包含了上述各个步骤的Matlab代码,包括信号生成、多普勒处理、速度和角度估计的函数或脚本。通过分析和运行这些代码,我们可以更深入地理解毫米波雷达的多普勒估计原理,并可对算法进行优化和改进。 毫米波雷达多普勒估计是雷达系统中的核心部分,它涉及到信号处理、数字通信等多个领域。通过Matlab仿真,不仅可以直观地了解其工作过程,也能为实际硬件设计提供重要的参考。在学习和研究过程中,我们需要对雷达原理、多普勒效应、以及Matlab编程有扎实的基础,以便更好地理解和应用这些知识。
2025-09-06 17:18:41 26KB matlab 毫米波雷达 角度估计 速度测量
1
HD-TVP-VAR-BK模型:高维多变量DY溢出指数的时变估计与频域分析,HD-TVP-VAR-BK模型:高维多变量DY溢出指数的时变估计与频域分析,HD-TVP-VAR-BK溢出指数,最新模型计算高维多变量DY溢出指数,并进行频域分解计算BK溢出指数 优势:通过Elastic Net方法进行降维处理,能够计算高维数据DY溢出指数,相较于传统TVP-VAR-BK模型只能计算最多20个变量,HD-TVP-VAR-BK可同时估计近百个变量,相较于Lasso BK,Elastic Net BK(弹性网络),HD-TVP-VAR-BK为时变估计,不用损失滚动窗口,且运行速度相对较快。 R语言代码,有注释和案例数据,能导出静态溢出矩阵,总溢出指数Total,溢出指数To,溢入指数From,净溢出指数Net 到 EXCEL,并实现画图。 ,核心关键词: 1. HD-TVP-VAR-BK溢出指数 2. 最新模型高维多变量DY溢出指数 3. 频域分解计算BK溢出指数 4. Elastic Net方法降维处理 5. 高维数据DY溢出指数计算 6. 传统TVP-VAR-BK模型 7. La
2025-09-06 17:17:24 1.56MB 数据结构
1
在水声定位系统中, 为尽量提高系统对水下目标的定位性能, 选择合适的空间谱估计算法是关键。对 M VDR、MUSIC、ESPRIT 等几种空间谱估计常用算法的结构和原理进行了分析。针对水声定位系统工作环境, 通过 计算机仿真, 比较了各算法的估计精度、运行时间和环境要求等指标, 得出MVDR 算法相比其他算法性能更优 ### 水声定位系统中空间谱估计算法仿真分析 #### 一、引言 水声定位系统作为现代海洋探测的重要组成部分,在海洋资源开发、军事侦察等方面具有重要的应用价值。该系统通过处理由水下传感器基阵接收的数据来获取关于目标的位置信息,其核心在于如何准确地估计出声源的方向。为了提高系统的定位性能,合理选择空间谱估计算法至关重要。本文主要探讨了几种常用的空间谱估计算法(如MVDR、MUSIC、ESPRIT)的结构和原理,并通过计算机仿真实验比较了这些算法的性能差异。 #### 二、空间谱估计算法数学模型 ##### 2.1 阵列信号模型 为了实现水下目标的定位,通常采用由多个换能器组成的水听器阵列来接收远场目标发出的噪声信号。阵列的形式多种多样,包括均匀直线阵、直角阵、均匀圆阵等,其中最基础的是均匀直线阵。下面以均匀直线阵为例,介绍水听器接收到的数据模型。 假设均匀直线阵由m个换能器组成,彼此间距为d,远场信号以角度θ入射到阵列上。若入射信号为窄带信号,中心频率为f,波长为λ,水中声速为c,则第m个换能器相对于第一个换能器的信号延迟时间可以表示为: \[ \tau = (m-1)\frac{d\cos\theta}{c} \] 对于第k次快拍数据,各阵元得到的数据向量可以表示为: \[ X(k) = A S(k) + N(k), \quad k = 1, 2, \ldots, K \] 其中,\(X(k)\) 是第k次快拍的数据向量;\(A\) 是阵列响应矩阵,它包含了阵列几何形状的信息;\(S(k)\) 是源信号向量;\(N(k)\) 是加性噪声向量。 #### 三、空间谱估计算法原理及特性 ##### 3.1 MVDR算法 MVDR(Minimum Variance Distortionless Response)算法是一种基于约束最小方差准则的波束形成算法。其基本思想是在保持指定方向上的增益不变的前提下,使输出信号方差最小化。MVDR算法的优点在于能够有效抑制噪声,同时保持对目标信号的良好检测能力。然而,MVDR算法对参数估计误差较为敏感。 ##### 3.2 MUSIC算法 MUSIC(Multiple Signal Classification)算法是一种基于子空间分解的方法,用于估计信号源的方位。该算法首先将接收信号的协方差矩阵分解成信号子空间和噪声子空间,然后通过寻找噪声子空间中与阵列响应向量正交的方向来估计信号源的位置。MUSIC算法具有较高的分辨率,但计算复杂度较高。 ##### 3.3 ESPRIT算法 ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法同样是基于子空间的方法,但它通过利用不同子阵之间的旋转不变性来简化问题,从而降低计算复杂度。ESPRIT算法适用于具有特定结构的阵列配置,例如均匀线性阵列,它可以提供高精度的方位估计。 #### 四、仿真分析 在水声定位系统的工作环境下,通过计算机仿真比较了MVDR、MUSIC、ESPRIT三种算法的估计精度、运行时间以及对环境的要求。结果表明,在相同的仿真条件下,MVDR算法的性能优于其他两种算法,特别是在估计精度和抗干扰能力方面表现突出。此外,MVDR算法在计算复杂度方面也表现出较好的优势,这意味着它能够在实际应用中更快地完成计算任务。 #### 五、结论 选择合适的空间谱估计算法对于提高水声定位系统的性能至关重要。通过对MVDR、MUSIC、ESPRIT等几种常用算法的原理进行深入分析,并通过计算机仿真比较了它们在水声环境下的性能表现,我们发现MVDR算法在估计精度、计算效率等方面具有明显的优势。因此,在实际应用中,根据具体的需求和条件选择合适的算法是非常重要的。未来的研究还可以进一步探索如何优化现有算法或者开发新的算法来满足更高性能的要求。
2025-09-05 15:58:58 979KB 水声定位
1
威布尔在可靠性工程中很有用,因为他是通用分布,通过调整分布参数可以构成各种不同的分布,可以为各种不同类型的产品的寿命特性建立模型。”–摘自《可靠性工程师手册》 “极大似然估计(maximum likelihood estimation, MLE)是一种重要的估计方法,他利用总体分布函数表达式及样本数据这两种信息来建立似然函数,它具有一致性,有效性和渐近无偏性等优良性质。“ –摘自《可靠性工程师手册》 工具依据IEC61649标准计算流程进行设计,分析结果与标准算例一致,主要功能如下: ①完全实现了IEC61649 MLE计算流程 ② 数据符合性判定(是否符合威布尔判定) ③支持完全数据、定时截尾数据、定数截尾数据 ④特征寿命和形状参数的估计 ⑤置信区间的估计 ⑥失效率可靠度相关计算等 ⑦支持数据批量导入(体验版无此功能) ⑧相关系数最有法计算位置参数(体验版无此功能)
1