VQF 全称 Highly Accurate IMU Orientation Estimation with Bias Estimation and Magnetic Disturbance Rejection,中文翻译为高精度IMU方向估计与偏置估计和磁干扰抑制算法,是导航领域的一种航姿算法,该算法的代码完全开源,本文对其作者发表的论文进行了深入分析,并用Matlab对VQF离线算法进行了复现。 资源包含论文原文、论文翻译、全部开源代码、复现算法代码、测试数据集等文件
2025-12-09 14:03:10 139.62MB 姿态解算 方向估计
1
本资源是自相关函数BT法估计功率谱的MATLAB详细代码,包含两个文件,一个是产生实随机信号的函数,另外一个是BT法估计PSD的脚步。 仿真条件设置为有3个正弦波加一个噪声,然后去估计功率谱。 代码中参数设置放置在最前面,包含样本数,延时数、FFT变换的点数,噪声功率,信号的归一化频率、信噪比等参数。 修改任何一个参数,仿真结果就会跟着改变,超级方便,只需修改参数,就可以观察不同参数下的功率谱估计效果。 代码绘制了两种延时数下的功率谱估计效果图,这两个图的横纵坐标均有标签,物理意义明确,可以观察分辨率对正确估计出信号个数的影响。 本资源中所有的代码关键处包含文字注释,编写的代码逻辑清晰,方便各位小伙伴理解、阅读、学习。 下载资源了的小伙伴有疑惑的可以私信我一起解决你的问题。 学习该资源,可以学透自相关函数BT法估计功率谱知识。
2025-12-08 11:44:09 2KB MATLAB 功率谱估计 自相关函数
1
基于频率滑动广义互相关算法的信号时延估计技术与应用研究(MATLAB R2018A环境下),基于频率滑动广义互相关的信号时延估计方法(MATLAB R2018A) 时间延迟是声信号处理中的主要参数,要想确定信源距离、方位、速度等信息,就要能够精确、快速地估计时延及其他参数。 所以,在信号处理领域中时延估计长期W以来都是的非常活跃的研究课题,在声纳、雷达、生物医学、通信、地球物理、石油勘探,语音信号增强和水声信号学、地震检波学等科学领域都有广泛的应用。 对时间延迟信息估计的方法、理论和性能的研究源自上个世纪,孕育于各种实际的工程应用需求,推动了时延估计TDE理论的发展。 从目前收集的文献资料分析,臻于成熟和完善的时延估计方法大致可以分为六大类。 第一类是基于相关分析的时延估计方法,基本思想是将一路接收信号在时间上产生移位生成另一路接收信号,比如远处信号抵达接收阵列中不同阵元时产生的各路接收信号,通过解算互相关函数的最大峰值(此时两路信号相似程度最大)的位置信息估计时延。 在较高信噪比,相关积分时间够长时此类方法可以做到精准时延估计,当相关积分时间较短、信噪比较低时,相关函数峰值会发生抖动
2025-12-07 14:36:10 54KB paas
1
利用Matlab/Simulink进行非线性悬架系统的模块化建模及其状态估计的方法。首先,针对空气悬架的非线性特性,使用S函数构建了带有双曲正切刚度特性的空气弹簧模型。接着,深入探讨了Unscented Kalman Filter (UKF) 在非线性系统中的优势,并展示了如何在Simulink中实现UKF的状态预测和更新。文中还讨论了模型验证过程中遇到的问题以及解决方案,如通过引入加速度自适应因子来提高估计精度,避免代数环问题以提升仿真效率。最后,强调了模块化建模的优势,特别是对于复杂系统的扩展性和维护性。 适用人群:对车辆工程、控制系统设计感兴趣的工程师和技术人员,尤其是那些希望深入了解非线性悬架系统建模及状态估计的人群。 使用场景及目标:适用于需要精确估计悬架系统状态(如动挠度)的应用场合,旨在帮助读者掌握非线性悬架系统的建模技巧和UKF状态估计的具体实现方法,从而为实际工程项目提供理论支持和技术指导。 其他说明:随附有详细的建模说明文档、Simulink源码文件及相关参考资料,便于读者理解和实践。建议从简单的线性模型开始,逐步增加非线性因素,确保UKF能够顺利收敛并获得准确的状态估计结果。
2025-11-26 14:40:15 389KB
1
内容概要:本文介绍了使用Matlab编写无迹卡尔曼滤波(UKF)算法实现锂电池SOC(荷电状态)估计的完整方法,包含状态方程建模、sigma点生成、协方差预测与更新等UKF核心步骤,并引入噪声系数自适应机制以提升滤波鲁棒性。采用二阶RC等效电路模型,结合OCV-SOC关系进行状态预测,通过新息检测动态调整过程噪声Q和观测噪声R,有效应对模型偏差。与传统EKF相比,UKF避免了雅可比矩阵计算,在SOC平台区具有更高估计精度。 适合人群:具备Matlab编程基础、熟悉电池管理系统(BMS)开发的工程师或研究生,尤其适合从事状态估计、滤波算法研究的技术人员。 使用场景及目标:①实现锂电池SOC高精度估计;②掌握UKF在非线性系统中的应用;③理解并实现噪声自适应策略以提升滤波器实际运行稳定性。 阅读建议:建议结合Matlab仿真环境运行代码,重点关注状态方程、sigma点传播及噪声自适应逻辑,可进一步替换为实测数据验证算法性能。
2025-11-23 12:34:56 386KB
1
在现代工业自动化领域,机器人视觉技术的应用越来越广泛。机器人的视觉系统可以帮助机器人感知周围环境,理解任务目标,从而做出相应的动作。UR5作为一款轻量级的协作机器人,以其灵活性和易用性成为科研和工业应用中的常见选择。在进行机器人视觉研究时,Gazebo作为一款流行的机器人仿真平台,提供了一个模拟真实世界环境的平台,便于进行各种视觉算法的测试和优化。 SIFT(尺度不变特征变换)算法是一种局部特征提取方法,它能在图像中提取出具有尺度不变性的关键点,并对这些关键点进行描述,从而实现对物体的快速、准确识别,尤其在物体发生旋转、缩放或亮度变化时仍然具有良好的稳定性和区分度。在机器人视觉系统中,SIFT算法常常被用于物体位姿的估计,这对于机器人准确抓取目标物体至关重要。 在本文档“机器人视觉_UR5_Gazebo_抓取_SIFT位姿估计Ma_1743961359.zip”中,可以推断其主要内容将涉及如何将UR5机器人的抓取任务与SIFT位姿估计算法结合,并在Gazebo仿真环境中进行测试和验证。通过在Gazebo中模拟UR5机器人视觉系统的操作,研究者能够评估SIFT算法在真实世界环境下的性能表现,并对算法进行调整以提高其准确性和效率。 文档的具体内容可能会包括以下几个方面: 1. UR5机器人介绍:UR5是UR家族中的一个成员,以其6自由度的设计,能够执行复杂的空间运动任务。在文档中,可能会详细描述UR5的结构特点、运动范围、控制方式等基本信息。 2. Gazebo仿真环境搭建:文档会介绍如何在Gazebo中搭建UR5机器人模型,并设置仿真场景,包括机器人的安装位置、仿真环境的光照和纹理等因素。 3. 机器人视觉系统构建:这部分内容将涉及到视觉系统的设计,包括摄像头的选择、安装位置、分辨率等参数的设置。 4. SIFT位姿估计算法实现:文档会详细介绍SIFT算法的原理以及在UR5机器人中的实现方式,包括关键点检测、特征描述子提取、关键点匹配等步骤。 5. 抓取任务设计:文档会探讨如何利用SIFT算法进行物体位姿估计,并基于此估计指导UR5机器人的抓取动作。这可能包括抓取点的选择、抓取路径规划以及抓取动作的实现。 6. 测试与评估:文档可能会展示一系列的测试实验,包括在不同条件下的抓取成功率、算法的稳定性和效率等评估指标。 通过这些内容的深入研究,可以帮助开发者更好地理解UR5机器人在Gazebo仿真环境下的视觉抓取能力,以及如何通过SIFT算法提高抓取的准确性和效率。这不仅对学术研究具有重要意义,也为工业领域提供了实用的技术参考和解决方案。
2025-11-21 16:25:39 56.17MB
1
运动估计算法的研究与fpga验证-学位论文.doc
2025-11-17 22:12:55 2.62MB
1
内容概要:本文探讨了现代车辆控制系统中难以实时测得整车质量和道路坡度的问题,基于车辆纵向动力学模型,详细介绍了无迹卡尔曼滤波(UKF)算法的设计与实现,并通过CarSim与MATLAB/Simulink联合仿真,比较了双遗忘因子递归最小二乘法(RLS-MFF)、扩展卡尔曼滤波(EKF)和UKF三种算法在这两个参数估计中的效果。实验结果显示,UKF算法在估计精度方面表现出色,尽管实时性稍逊,但仍能满足实际应用的需求。 适合人群:从事车辆控制、自动驾驶技术和先进驾驶辅助系统(ADAS)的研究人员和技术人员。 使用场景及目标:① 提供一种有效的整车质量和道路坡度同步估计算法,以提升车辆控制系统的性能;② 改善自适应巡航控制系统(ACC)、自动紧急制动系统(AEB)等ADAS的性能;③ 为剩余续航里程预测和换挡策略优化提供支持。 其他说明:文中还讨论了基于传感器和基于模型的不同估计方法,并详细解释了UKF算法的具体实现步骤以及与其他两种算法的对比分析。
1
资源下载链接为: https://pan.quark.cn/s/d9ef5828b597 OpenPose关键点识别速查笔记 —————————————— 1 整体思路 把RGB图拆成两个并行的置信图分支: 身体18点 PAFs(Part Affinity Fields) 手/脸/足 高分辨热图 用CNN同时估计,后接贪婪匹配→拼装骨架。 2 网络结构 输入:368×368×3 前段:VGG19前10层→特征F 中段:6级级联 refine,每级含: PCM(关键点热图) + PAF(肢体向量场) 双分支 末段:上采样×4→高分辨率手/脸/足热图(输出尺寸 96×96)。 3 关键点定义 身体18点:0鼻1颈2右肩3右肘…17头顶 手21点:掌心→五指关节 脸70点:轮廓、眉、眼、鼻、嘴 足6点:大/小趾、脚跟 4 PAF 拼装流程 (1) 取PCM中局部极值>阈值得候选点 (2) 对每类肢体(如右前臂) a. 计算两端点对连线 b. 采样10点,累加PAF方向一致性得分 c. 匈牙利算法最大权重匹配→成对 (3) 重复(2)直至全身骨架。 5 训练细节 数据增强:随机旋转±30°、尺度0.5-1.5、半身遮挡 损失:均方误差,难样本权重×3 迭代:1e-4 Adam,前60k步冻结VGG,后40k全调。 6 推断加速 半精度FP16,批处理4帧 先用低分辨率检出人体框,再裁出子图精修手/脸 多线程:CPU后处理,GPU前向。 7 可视化速读 图1:输入图 → 图2:PCM叠加 → 图3:PAF箭头 → 图4:最终骨架 红=高置信,蓝=低置信。 8 误差排查清单 漏检:降低阈值/增尺度 抖动:使用光流平滑 自遮挡:加侧面训练数据。
2025-11-13 10:24:19 250B 姿态估计 PPT资源
1
离网DOA估计的径向稀疏贝叶斯学习MATLAB代码__MATLAB codes for _Root sparse Bayesian learning for off-grid DOA estimation_.zip 在信号处理领域,方向到达(Direction of Arrival, DOA)估计一直是研究的热点。离网DOA估计关注于在缺乏精确阵列流型信息的情况下,对入射信号的方向进行估计。径向稀疏贝叶斯学习(Root Sparse Bayesian Learning, root-SBL)是一种新兴的算法,它利用贝叶斯推断框架,通过稀疏性先验信息实现对信号参数的估计。这种方法尤其适用于多源信号环境,能够有效分离和定位来自不同方向的信号。 径向稀疏贝叶斯学习作为一种统计信号处理方法,其核心在于通过引入稀疏先验信息来增强信号检测的准确性。在实际应用中,这一算法能够处理信号源非严格稀疏的情况,对于非网格(off-grid)场景同样有效。传统的DOA估计方法,如多重信号分类(MUSIC)和最小范数法(MNM),在面对离网问题时存在估计偏差和分辨率低下的问题,而root-SBL算法通过迭代优化,能够克服这些问题,提供更为精确的估计。 root-SBL算法的实现通常涉及到复杂的数学推导和数值计算。在MATLAB环境中,通过编写特定的代码来实现该算法,可以为研究者和工程师提供一个直观且易于操作的工具。这些MATLAB代码通常包含了信号的生成、模型参数设置、算法参数调整以及最终的性能评估等多个环节,为用户提供了完整的实验流程。 在算法的MATLAB代码实现中,可以观察到以下几个关键步骤: 1. 初始化参数:包括信号源的数量、信噪比(SNR)、阵列的配置等。 2. 信号模型构建:基于已知或假设的信号和噪声模型来构建信号的统计特性。 3. 迭代更新:通过迭代过程不断更新信号的估计值,直到满足收敛条件。 4. 结果分析:对估计得到的DOA结果进行分析,包括误差统计和分辨率分析等。 对于root-SBL算法的MATLAB实现而言,其代码通常需要精心设计以确保计算效率和结果的准确性。这些代码可能涉及矩阵运算、优化算法以及性能评估等多个方面。在用户界面上,应当提供友好的交互功能,以便用户能够方便地进行实验设置和结果查看。 离网DOA估计的径向稀疏贝叶斯学习MATLAB代码提供了一个强大的工具,用于在复杂的信号环境中准确地估计信号的到达方向。该算法和代码实现了将理论算法与实际应用相结合,为相关的学术研究和工程实践提供了有力的支持。
2025-11-10 19:15:27 2KB matlab
1