光纤的色散是引起光纤带宽变窄的主要原因,光纤带宽变窄会限制光纤的传输容量,同时,也限制了光信号的传输距离。
2023-11-09 15:09:43 90KB
1
基于电磁场时域有限差分法(FDTD)计算光子晶体光纤(PCF)的方法, 分析了运用该方法时需要注意的一些问题, 特别是关于晶格位置、晶格上各个电磁场分量的分布以及完全匹配层(PML)中在边界处的电磁场的处理。以此为理论依据分析了一种纯石英材料双层芯PCF, 对这种光纤的传输特性进行了详细的数值模拟。通过调整光纤的结构参数, 设计出大负色散值的宽带色散补偿光子晶体光纤(DCPCF)。数值模拟结果显示在1530~1565 nm波长范围内其色散值在-400和-600 ps/(km·nm)之间变化, 达到了具有相同有效模面积的普通色散补偿光纤(DCF)的5倍。在整个C波段可以有效补偿长度25倍以上的标准单模光纤(SMF), 其色散剩余量在±1.0 ps/nm·km以内。该种结构的PCF对于制作高增益和宽带色散补偿于一体的集中式光纤放大器具有十分重要的意义。
2022-06-24 10:03:01 867KB 光纤光学 光子晶体 色散 时域有限
1
根据波导标量解本征值方程及其递推关系,提出一种利用Gloge关系求解单模光纤中波导色散的理论方法,给出了色散的解析形式.通过分析归一化传输常数的近似解与精确解间的差别论证了这种解析法具有精确求解的计算精度.给出普通单模光纤(G.652)光纤色散的实验数据,并与计算的色散解析解曲线加以比较,二者达到极好的吻合.利用所得到的结果,分析了数值微分法和经验公式的计算精度.
2022-04-11 19:36:40 819KB 光纤色散 波导色散 材料色散
1
对1550 nm波长附近具有不同色散特性的光纤产生超连续谱进行了详细的计算和分析。结果表明,在反常色散区和零色散区,由于内脉冲拉曼散射效应和三阶色散效应的影响,不能产生平坦、宽带的超连续谱。而在正常色散区,可以产生平坦光滑的超连续谱。进一步研究表明,具有较小正常色散的色散平坦光纤对于产生平坦、宽带的超连续谱极为有效。通过增强脉冲抽运功率,可以得到谱强起伏小于10 dB、带宽达300nm以上的平坦超宽超连续谱。
2021-05-07 17:07:58 369KB 光纤光学 超连续谱 二阶色散
1
为提高分布式光纤拉曼测温系统的测量速度和测量准确度,提出了一种自补偿光纤损耗及光纤色散的温度解调方法,并进行了实验验证。该方法对斯托克斯与反斯托克斯后向散射信号进行了损耗修正,避免了测温前对整条传感光纤进行定标处理的过程,减小了系统的运行时间;采用色散补偿平移算法对斯托克斯后向散射信号的位置进行修正,获得了与反斯托克斯后向散射信号相同位置处的斯托克斯后向散射信号的强度,降低了光纤色散对温度解调的影响,提高了系统的测温准确度。实验结果表明,当光纤传感距离为5.8 km时,温度波动由9.01 ℃下降到0.57 ℃,测温准确度由5.50 ℃优化至0.87 ℃。
2021-02-06 20:04:01 9.23MB 光通信 分布式光 拉曼测温 光纤色散
1
文件内包含光网络中色散分析Matlab文件,重点针对光网络中的单模光纤进行色度色散分析,其中色散主要考虑了材料色散和波导色散。程序亲测可用,最终可以得到1520nm至1580nm波长段的色散曲线。
2019-12-21 21:52:43 7.04MB 光网络 色散 单模光纤 matlab
1
计算光子晶体光纤的有效折射率程序,可以得到有效折射率随波长变化图 (Calculate the effective refractive index of the photonic crystal fiber program, you can get change in the effective refractive index with wavelength)
2019-12-21 21:45:16 675KB matlab
1