苹果高光谱图像数据集用于纯苹果和施肥苹果的高光谱数据集 关于数据集 用于测量所用化学物质水平的纯苹果和施肥苹果的高光谱数据集。数据集由各种苹果的高光谱图像组成。分为三大类: 1.“新鲜”-从市场直接购买的苹果图像 2."低浓度”-苹果浸入低浓度杀真菌剂/杀虫剂溶液 即1克或1毫升肥料兑1升水)的图像,以及 3.高浓度“_苹果浸入低浓度杀真菌剂/杀虫剂溶液 (即3克或3毫升肥料兑1升水)的图像,以及 默认情况下,高光谱图像保存为.bil格式。此数据集以.tif格式给出。 整个数据集被分类为三个folders.1Apple_Samples,2.Fungicide_Apple3.lnsecticide_AppleApple_Samples文件夹由两个文件夹组成:monostar和nativo。“Monostar”被进一步分为四个文件夹,总共有207张图片。"Nativo"由=个文件夹组成,总共73张图片。 杀菌剂 苹果由162张图片组成,分为三类,即新鲜苹果、低浓度溶液浸泡的苹果和高浓度溶液浸泡的苹果。本试验所用的杀菌剂是NATIVO。 同样,杀虫剂苹果由175张图片组成,也分为三类
2025-05-18 09:08:56 761.24MB 数据集
1
内容概要:本文介绍了一个用于高光谱图像分类的CNN-RNN混合模型及其在PyTorch中的实现。针对高光谱数据的特点,作者提出了一个创新的模型架构,利用CNN提取空间特征,RNN处理光谱序列。文中详细描述了数据预处理、模型构建、训练流程以及结果保存的方法,并分享了一些提高模型性能的技巧,如数据增强、随机种子设置、动态学习率调整等。最终,在Indian Pines和Pavia University两个经典数据集上实现了超过96%的分类准确率,仅使用20%的训练数据。 适合人群:从事遥感影像处理、机器学习研究的专业人士,特别是对深度学习应用于高光谱图像分类感兴趣的科研人员和技术开发者。 使用场景及目标:适用于需要高效处理高维高光谱数据的研究项目,旨在提升分类准确性的同时降低计算成本。目标是帮助研究人员快速搭建并优化基于深度学习的高光谱图像分类系统。 其他说明:提供的代码已在GitHub上开源,包含完整的数据处理、模型训练和评估流程。建议使用者根据自身数据特点进行适当调整,以获得最佳效果。
2025-05-11 08:29:00 112KB
1
基于CNN-RNN的高光谱图像分类项目报告:全套代码、数据集及准确率记录管理,高光谱图像分类:CNN-RNN深度学习模型的全套解决方案,高光谱图像分类CNN-RNN结合 pytorch编写 该项目报告网络模型,2个开源数据集,训练代码,预测代码,一些函数的 拿到即可进行运行,全套。 代码中加入了每一步的预测准确率的输出,和所有迭代次数中,预测精度最好的模型输出。 所有预测结果最后以txt文本格式输出保存,多次运行不会覆盖。 设置随机种子等等。 该项目在两个数据集上精度均可达96以上(20%的训练数据)。 ,高光谱图像分类; CNN-RNN结合; PyTorch编写; 网络模型; 开源数据集; 训练代码; 预测代码; 函数; 预测准确率输出; 最佳模型输出; txt文本格式保存; 随机种子设置; 精度达96以上,高光谱图像分类:CNN-RNN模型全解析报告
2025-05-11 05:05:46 4.75MB
1
以新疆红富士苹果为研究对象,探讨应用高光谱图像技术和最小外接矩形法预测其大小的研究方法。提取苹果高光谱图像中可见红色区域受色度影响较小的713nm以及近红外区域793和852nm的3个波长图像,做双波段比运算处理。比较所得双波段比图像可知,852/713双波段比图像中背景和前景灰度对比度最大。对该图像做阈值分割以及形态闭运算去除果梗区域,使用8邻接边界跟踪法得到二值图像的轮廓坐标序列,采用最小外接矩形法求苹果的大小,与实测值建立回归方程。结果表明,基于高光谱图像技术采用波段比算法,结合最小外接矩形法,能够有效地检测苹果大小,预测值与实际值最大绝对误差为3.06mm,均方根误差为1.21mm。
2025-04-29 18:04:53 359KB 最小外接矩形
1
matlab改变代码颜色MDL4OW 的源代码和注释: 刘胜杰,石谦和张良培。 使用多任务深度学习的未知类的少量快照高光谱图像分类。 IEEE TGRS,2020年。 接触: 代码和注释在此处发布,或检查 概述 普通:错误分类道路,房屋,直升机和卡车 以下是正常/封闭式分类。 如果您熟悉高光谱数据,您会发现培训样本中未包含某些材料。 例如,对于上方的图像(萨利纳斯山谷),道路和农田之间的房屋无法分类为任何已知类别。 但是,深度学习模型仍然必须分配标签之一,因为从不教它识别未知实例。 我们的工作:用黑色掩盖未知的事物 我们在这里所做的是,通过使用多任务深度学习,使深度学习模型具有识别未知事物的能力:那些被黑色掩盖的事物。 对于上方的图像(萨利纳斯山谷),农田之间的道路和房屋已成功识别。 对于下图(帕维亚大学校园),直升机和卡车被成功识别。 钥匙包 tensorflow-gpu==1.9 keras==2.1.6 libmr 在Windows 10的Python 3.6上测试 推荐Anaconda,Spyder 如何使用 高光谱卫星图像 输入图像的大小为imx×imy×通道。 卫星图像是标
2024-04-08 16:45:32 48KB 系统开源
1
【图像融合】稀疏表示多光谱图像融合.md
2023-11-24 21:43:42 8KB matlab代码
1
光谱图像分类2D_CNN网络代码 基于pytorch框架制作 全套项目,包含网络模型,训练代码,预测代码,直接下载数据集就能跑,拿上就能用,简单又省事儿 内附indian pines数据集,采用20%数据作为训练集,并附上迭代10次的模型结果,准确率99左右。
2023-09-05 16:16:48 330KB pytorch pytorch 网络 网络
1
我们提供了用于模拟GAP相机的多光谱图像数据库。这些图像包含各种现实世界的材料和物体。我们正在将该数据库提供给研究社区。
2023-04-24 16:18:30 387.18MB CAVE数据集 多光谱图像
1
对新疆冰糖心红富士苹果采用高光谱成像技术进行分级和糖度预测研究。在糖度预测分析中,使用正交试验设计方法确定影响预测效果的主要因素是预测回归方法、光谱预处理方法和波长合并,次要因素是光谱校正处理方法、数据类型和实测值归一化处理。提取平均光谱,经过白板校正,采用一阶微分光谱预处理,10个波长的光谱合并,基于多元线性回归方法建立苹果糖度的预测模型,其验证集苹果糖度的预测模型相关系数为0.911,预测均方根误差为0.76%Brix,相对分析误差为2.44。在分级研究中,选择712nm波长图像,Gamma灰度变换增强图像,大津算法阈值确定后分割图像,基于形态学处理剔除果梗区域,提取苹果分割后区域的面积、充实度、周长、平均灰度等特征,采用二次判别分析分级苹果,验证集苹果分级准确率达到89.5%。结果表明,高光谱图像技术既能够准确预测新疆冰糖心红富士苹果糖度品质,也可以用于基于外部品质特征的分级研究。
1