为了实现定量化应用目标,高精度的云层检测已成为遥感数据预处理的关键步骤之一。然而,传统的云检测方法存在特征复杂、算法步骤多、鲁棒性差,且无法将高级特征和低级特征相结合的缺陷,检测效果一般。针对以上问题,提出了一种基于深度残差全卷积网络的高精度云检测方法,能够实现对遥感影像云层目标像素级别的分割。首先,编码器通过残差模块的不断降采样提取图像深层特征;然后,应用双线性插值进行上采样,结合多层次编码后的图像特征完成解码;最后,将解码后的特征图与输入图像融合后再次进行卷积,实现端到端的云检测。实验结果表明,对于Landsat 8云检测数据集,所提方法的像素精度达到93.33%,比原版U-Net提高了2.29%,比传统Otsu方法提高了7.78%。该方法可以为云层目标智能化检测研究提供有益参考。 【基于深度残差全卷积网络的Landsat 8遥感影像云检测方法】是一种利用深度学习技术改进遥感影像云层检测的创新方法。传统的云检测手段往往因为特征提取复杂、步骤繁多以及鲁棒性不足而限制了其在高精度应用中的表现。而该方法则旨在克服这些缺点,通过深度残差全卷积网络(Deep Residual Fully Convolutional Network,DRFCN)实现对遥感影像云层目标的像素级精确分割。 深度残差网络(Residual Network)是深度学习领域的一个重要突破,它通过引入残差块来解决深度神经网络中的梯度消失和爆炸问题,使得网络能更有效地学习到高层特征。在云检测中,DRFCN的编码器部分利用残差模块进行连续的下采样,这有助于提取图像的深层语义特征,如纹理、形状和颜色等与云层相关的重要信息。 全卷积网络(Fully Convolutional Network, FCN)在此过程中起到了关键作用,它允许网络直接进行像素级别的预测。在DRFCN中,经过编码器提取特征后,采用双线性插值进行上采样,目的是恢复图像的空间分辨率,同时结合不同层次编码后的图像特征进行解码。这种解码过程有助于保持从低层到高层的细节信息,确保了云检测的准确性。 解码后的特征图与原始输入图像融合,再次进行卷积操作,实现了端到端的云检测。这种方法的优势在于可以综合高级特征和低级特征,提高检测的鲁棒性和精度。实验结果显示,对于Landsat 8云检测数据集,该方法的像素精度达到了93.33%,相比原版的U-Net(Unet)提高了2.29%,相对于传统的Otsu方法提高了7.78%。 此方法不仅提升了云检测的精度,也为遥感影像分析的智能化和自动化提供了有效工具,特别是在气候监测、环境变化研究、灾害预警等领域具有广泛的应用潜力。未来的研究可以进一步优化网络结构,探索更高效的方法来融合特征,以及针对不同类型的遥感影像进行适应性调整,以提升在更大范围和更复杂条件下的云检测性能。
2025-06-04 12:25:18 2.36MB 深度学习 语义分割
1
针对显著性检测中特征选择的主观片面性和预测过程中特征权重的难以协调性问题,提出了一种基于全卷积神经网络和多核学习的监督学习算法。首先通过MSRA10K图像数据库训练出的全卷积神经网络(FCNN),预测待处理图像的初步显著性区域;然后在多尺度上选择置信度高的前景、背景超像素块作为多核支持向量机(SVM)分类器的学习样本集,选择并提取八种典型特征代表对应样本训练SVM;接着通过多核SVM分类器预测各超像素显著值;最后融合初步显著图和多核学习显著图,改善FCNN网络输出图的不足,得到最终的显著性目标。该方法在SOD和DUT-OMRON数据库上有更高的AUC值和F-measure值,综合性能均优于对比方法,验证了该方法在显著性检测中准确性的提高,为目标识别、机器视觉等应用提供更可靠的预处理结果。
1
天文导航是以已知准确空间位置、不可毁灭的自然天体为基准,被动探测天体位置,经解算确定测量点所在平台的经度、纬度、航向和姿态等信息。其中以通过对恒星成像进行光电转换获取星点信息进行姿态确定的星敏感器应用最为广泛,他主要包括两个部分:星点提取和星点识别,本文主要关注前者。除了成像器件本身的噪声缺陷,由于空间辐射会导致星敏感器拍摄星图背景灰度均值增大, 背景起伏明显, 另一方面星敏感器探测的是微弱的恒星星光,对杂散光非常敏感,,主要的杂散光源为日光、月光和地气光等杂散辐射源,主要呈现为斜坡噪声。 传统的几何方法主要需要针对某一种情况下的某种应用,当成像器件、光学环境和空间环境等发生变化时,相应的方法也会发生改变。使用全卷积神经网络可在不改变网络结构的情况下,通过更改训练样本,灵活实现星点提取。具体到本文,主要解决三个方面的问题:1不同背景均值下的提取,2散点噪声下的提取,3斜坡噪声下的提取。
1
摘要为进一步提高多聚焦图像的融合质量提出一种基于监督学习的全卷积神经网络多聚焦图像融合算法该算法旨在运用神经网络学习源图像不同聚焦区域的互补关系即选择源图像中不
2022-11-17 14:33:14 13.23MB 图像处理 监督学习 全卷积 多聚焦图
1
基于最新的tensorflow·2.0框架下的全卷积神经网络,十分适合小白用户查看。一看即懂。代码优化十分简单,没有掺杂复杂建模,一个程序运行到底!
2022-11-05 17:06:35 6KB tensorflow2.0
1
针对当前去雾算法经常出现过度曝光、颜色失真等问题,提出了一种基于全卷积回归网络的去雾算法。该回归网络基于端到端系统,由特征提取和特征融合两部分构成。首先,输入有雾图像,经过特征提取和特征融合,最终回归为粗透射率图;之后使用导向滤波对其进行优化,再利用大气物理散射模型反演出无雾图像;最终采用限制对比度自适应直方图均衡化(CLAHE)对无雾图像进行增强,以得到更符合人类视觉的清晰图像。所提算法不仅可以有效避免去雾后出现的过度曝光和颜色失真等问题,而且能保留图像完整的细节信息,具有较好的去雾效果。
2022-09-16 08:34:22 16.92MB 图像处理 图像去雾 卷积神经 端到端
1
全卷积网络(Penn-Fudan Database数据集)
2022-07-27 11:05:32 184.68MB 全卷积网络(Penn-Fudan
1
通过深度学习模型对室内楼道环境的视觉信息进行处理,帮助移动机器人在室内楼道环境下自主行走。为达到这个目的,将楼道环境对象分为路、门、窗户、消防栓、门把手和背景六类,通过图像的语义分割实现对象识别。在对楼道环境的六类对象进行分割的实验中发现,由于门把手比起其他对象小很多,影响了对它的识别效果;将六分类模型改为“5 2”分类模型,解决了这个问题。分类模型的基础是全卷积神经(FCN)网络,可以初步实现图像的分割。为了提高FCN网络的分割效果,从三个方面进行了实验研究:a)取出FCN网络的多个中间特征层,进行多层特征融合;b)考虑到移动机器人行走过程中视觉信息的时间序列特点,将递归神经网络(RNN)的结构纳入到FCN网络中,构成时间递归的t-LSTM网络;c)考虑到二维图像相邻像素之间的依赖关系,构成空间递归的s-LSTM网络。这些措施都有效地提高了图像的分割效果,实验结果表明,多层融合加s-LSTM的结构从分割效果和计算时间方面达到综合指标最佳。
1
基于全卷积Fully-Convolutional-Siamese-Networks的目标跟踪仿真+word版说明文档 版本组合:Win7+Matlab R2015b+CUDA7.5+vs2013 文档中提供了上述运行环境的配置方法 注意事项(仿真图预览可参考博主博客里面"同名文章内容"。)
2022-05-26 12:05:57 99.8MB 目标跟踪 人工智能 计算机视觉 全卷积
使用FCN进行图像分割 使用Keras框架和Python3,我实现了一个包括其编码器和解码器的全卷积网络“ FCN”,以对室内场景图像(如卧室,客厅和饭厅)进行分割,以最终令人满意的精度,损失和平均交集超过了MIoU ”。 结果
2022-05-11 08:18:03 3.34MB JupyterNotebook
1