### 2023年全国大学生数学建模大赛C题知识点解析 #### 一、问题背景及重述 - **背景介绍**: - 在中国全面进入小康社会后,民众对高品质生活的需求日益增长,这对于传统生鲜超市而言既是机遇也是挑战。 - 蔬菜作为日常生活中的必需品之一,其保鲜周期短,且品质会随着时间的推移而降低。一旦当日未能售出,次日便难以继续售卖。 - 面对这一现状,超市需在不确定具体商品种类和进价的情况下做出合理的补货决策。 - 由于蔬菜种类繁多且来源不一,进货通常在凌晨完成,因此需要根据市场变化快速做出决策。 - **问题重述**: - 对于某超市的六个蔬菜类别(附件1),利用附件2和附件3提供的历史销售数据,构建模型以解决以下四个问题: 1. **销量分析**:分析各蔬菜品类和单品的销售规律及其相互关系。 2. **补货决策与定价**:预测销售量,并基于“成本加成定价”原则确定最优补货量与定价策略。 3. **单品预测与定价**:针对选定的30种单品,预测单日销量并确定最佳定价。 4. **综合策略制定**:结合供应端和消费端的因素,提出合理的补货和定价策略。 #### 二、数据预处理与分析方法 - **数据整合**:将附件中的四个数据集整合为单一数据集。 - **异常值处理**:剔除无效数据,使用3σ准则识别并移除异常值。 - **销量分析**: - **图表分析**:绘制各蔬菜销量分布图。 - **描述性统计**:计算平均值、标准差等统计量。 - **聚类分析**:利用K均值聚类算法对蔬菜进行分类。 - **频数分析**:分析各品类出现频率。 - **相关性分析**:通过皮尔逊相关系数分析蔬菜之间的相关性。 - **预测模型构建**: - **岭回归分析**:预测蔬菜销售总量及各品类销量。 - **ARIMA模型**:预测未来销售量和批发价。 - **定价策略**:基于成本加成定价原则确定各品类的最优定价。 - **遗传算法**:优化定价策略,寻找最大收益下的最优解。 #### 三、具体分析过程 - **销量分析**: - 将蔬菜分为三大类:日常主菜、辅菜、时令蔬菜。 - 发现花叶类、辣椒类和食用菌销量较大。 - 进行JB检验,验证销量是否符合正态分布。 - 皮尔逊相关性分析显示不同品类间的相关性。 - **补货决策与定价**: - 岭回归分析显示蔬菜销售总量与批发价、销售单价呈负相关。 - 计算加成率,确定合理定价范围。 - 使用ARIMA模型预测销售量和批发价。 - 结合预测结果和损耗率,计算最优补货量和定价。 - **单品预测与定价**: - 选取销量较大的30种单品。 - 运用ARIMA模型预测销量。 - 应用遗传算法确定最优定价。 - **综合策略制定**: - 供应链管理:收集产地数据,了解气候规律。 - 消费者行为研究:收集烹饪方式和消费者偏好数据。 - 制定合理的补货和定价策略,满足顾客需求。 #### 四、结论 - 通过对超市蔬菜销售数据的深入分析,本研究提出了有效的补货和定价策略。 - 通过构建预测模型和遗传算法优化,实现了蔬菜销量预测和定价策略的优化。 - 结合供应链管理和消费者行为分析,制定了更加灵活和高效的销售策略。 - 本研究不仅有助于提高超市的盈利能力,还能提升顾客满意度,促进超市长期稳定发展。
2024-08-22 13:23:53 2.53MB
1
完整作品
2021-09-16 20:01:57 1.31MB 建模
1
全国大学生数学建模竞赛创办于1992年,每年一届,已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。2018年,来自全国34个省/市/区(包括香港、澳门和台湾)及美国和新加坡的1449所院校/校区、42128个队(本科38573队、专科3555队)、超过12万名大学生报名参加本项竞赛。
2021-08-28 12:11:13 14.23MB 数学建模 国赛 国奖
1
2010年全国大学生数学建模大赛获奖论文 储油罐的变位识别与罐容表标定
1
2016全国大学生数学建模大赛国家一等奖论文A题.pdf
2021-01-28 03:45:08 1.21MB 梵蒂冈
1
数学建模国赛优秀获奖论文,适合建模之前阅读学习
1
2013年全国大学生数学建模大赛A题全国一等奖论文,里面包括利用模型进行交通预测
2019-12-21 22:13:23 885KB 2013数模A题
1
2013全国大学生数学建模大赛B题第2问(附件2)碎纸还原程序 有附件原图,效果图,matlab程序实现的代码
2019-12-21 21:24:50 798KB 2013 数学建模 碎纸还原 2013数学建模
1