Matlab迁移学习算法助力轴承故障诊断:准确率高达98%,附带详细注释的程序,基于Matlab的迁移学习滚动轴承故障诊断系统:高准确率,简易操作,Matlab 基于迁移学习的滚动轴承故障诊断 1.运行环境Matlab2021b及以上,该程序将一维轴承振动信号转为二维尺度图图像并使用预训练网络应用迁移学习对轴承故障进行分类,平均准确率在98%左右。 2.使用MATLAB自带的Squeezenet模型进行迁移学习,若没有安装Squeezenet模型支持工具,在命令窗口输入squeezenet,点击下载链接进行安装。 3.程序经过验证,保证程序可以运行。 4.程序均包含详细注释。 ,Matlab; 迁移学习; 滚动轴承故障诊断; 一维振动信号转换; 二维尺度图图像; 预训练网络; Squeezenet模型; 平均准确率; 程序验证; 详细注释。,基于Matlab的迁移学习轴承故障诊断系统:振动信号二维化与Squeezenet应用
2025-09-21 09:03:14 2.16MB
1
手写数字识别是计算机视觉领域的一个经典问题,其核心是通过算法对数字化手写字符进行准确分类。在现代,这一问题通常通过深度学习中的卷积神经网络(CNN)来解决,因为CNN在图像识别任务上展现出了卓越的性能。本手写数字识别模型训练项目正是基于此原理,利用python语言和TensorFlow框架开发而成。 本项目不仅提供了一个训练有素的手写数字识别模型,还允许用户基于现有的训练成果进行进一步的训练和优化,以便提升识别的准确率。这一功能对于研究人员和开发者来说极具价值,因为这样可以省去从头训练模型所需的时间和资源。同时,模型能够达到99.5%以上的识别准确率,这一数据表明模型在手写数字识别任务上已经达到了非常高的性能标准。 通过项目的实际应用,我们可以了解到神经网络训练的基本流程和关键步骤。需要收集并预处理手写数字的图像数据集,将其转换为适合神经网络训练的格式。然后,设计神经网络结构,根据手写数字识别的特点选择合适的网络层和参数。在本项目中,使用的是卷积神经网络,它包含多个卷积层、池化层和全连接层,每一层都有特定的作用,如特征提取、降维和分类等。 在模型训练过程中,需要对网络的权重进行初始化,并通过大量的样本进行训练,通过不断迭代更新权重以减小损失函数。TensorFlow框架提供了强大的工具来简化这一过程,使得模型训练变得更为高效。此外,为了避免过拟合现象,通常会采用各种技术,比如数据增强、正则化、Dropout等,以提高模型的泛化能力。 在模型训练完成后,需要通过测试集验证模型的性能,并对模型进行评估。只有当模型在测试集上的表现达到预期标准后,模型才能被用于实际的手写数字识别任务。在本项目中,开发者能够利用提供的模型进行微调,以适应特定应用场景的需求。 对于希望使用本项目的开发者而言,压缩包中包含的“digits_RCG”文件是训练过程中不可或缺的一部分。该文件很可能是包含训练数据集、模型参数、训练脚本和可能的评估代码等的集合。通过运行这些脚本和程序,用户可以轻易地开始模型的训练或对已有模型进行二次训练。 本项目在手写数字识别领域提供了一个强大的工具,不仅适用于研究和开发,也适用于教育和学习。它结合了深度学习的前沿技术和TensorFlow框架的便利性,使得构建一个高准确率的手写数字识别模型变得简单和高效。
2025-08-02 06:22:38 2.9MB python
1
卷积神经网络在RadioML2016.10A数据集上的信号识别:基于ResNet的分类准确率与损失函数分析,基于ResNet的卷积神经网络在RadioML2016.10A数据集上的信号识别与性能分析——出图展示分类准确率、混淆矩阵及损失函数迭代曲线,卷积神经网络识别信号 ResNet RadioML2016.10A数据集11种信号识别分类 出图包含每隔2dB的分类准确率曲线、混淆矩阵、损失函数迭代曲线等 Python实现 ,卷积神经网络; ResNet; 信号识别; RadioML2016.10A数据集; 分类准确率曲线; 混淆矩阵; 损失函数迭代曲线; Python实现,卷积神经网络在RadioML2016数据集上的信号识别研究
2025-06-18 09:28:46 1MB xbox
1
在机器学习和统计分类问题中,分类指标是衡量模型性能的重要工具,它们帮助研究者和开发人员评估和比较不同分类算法的效果。分类指标包括准确率、召回率、精确率等,每个指标从不同角度反映了分类器的性能。为了深入理解这些指标,首先需要了解一些基础概念。 阈值是分类模型中的一个重要参数,它决定了一个实例被分类为正类或负类的界限。在二分类问题中,阈值通常设置在0到1之间。阈值的选择会影响到分类结果中的真正例、假正例、真负例和假负例的数量,从而影响到准确率、召回率和精确率等指标的计算。 混淆矩阵(Confusion Matrix)是评估分类模型性能的另一种工具,它是一个特殊的表格布局,可以清晰展示分类器的性能。在二分类问题中,混淆矩阵包含四个部分:真正例(True Positives,TP)、假正例(False Positives,FP)、真负例(True Negatives,TN)和假负例(False Negatives,FN)。混淆矩阵不仅有助于计算准确率、召回率和精确率等指标,还可以帮助识别分类问题中可能出现的偏斜情况。 准确率(Accuracy)是分类模型正确预测样本数量与总样本数量之比。它反映了分类器预测正确的频率。公式为:准确率 = (TP + TN) / (TP + TN + FP + FN)。然而,在不平衡的数据集中,高准确率并不能保证模型有良好的性能。例如,在正负样本比例严重失衡的情况下,即使模型总是预测为多数类,也可能得到很高的准确率,但实际上模型对于少数类的预测能力非常差。 召回率(Recall),也称为敏感度,关注的是模型正确识别正类的能力。召回率等于真正例的数量除以实际正类总数,公式为:召回率 = TP / (TP + FN)。召回率反映了模型识别到的正类占实际正类总数的比例。在需要减少假负例的问题中,比如疾病诊断,高召回率是追求的目标。 精确率(Precision)衡量的是模型预测为正类的样本中,实际为正类的比例。公式为:精确率 = TP / (TP + FP)。精确率反映了模型对正类的预测质量。在一些特定应用中,例如垃圾邮件检测,高精确率意味着可以减少误报的数量,提升用户体验。 在实际应用中,除了单独考虑上述指标外,还会结合其他指标,如F1分数(F1 Score),它是精确率和召回率的调和平均数,公式为:F1 = 2 * (precision * recall) / (precision + recall)。F1分数提供了一个单一的指标来平衡精确率和召回率。 此外,还存在ROC曲线(Receiver Operating Characteristic Curve)和AUC(Area Under the Curve)等指标用于评估模型的分类性能。ROC曲线展示了在不同阈值设置下,模型的真正例率(即召回率)和假正例率之间的关系。AUC值给出了ROC曲线下的面积大小,其值的大小可以衡量分类器的总体性能。 准确率、召回率、精确率及其它相关指标构成了对分类模型性能的全面评价。在不同的应用场景和需求下,这些指标可能需要不同的重视程度。理解并合理使用这些指标,有助于提高模型的预测性能,更好地解决实际问题。
2025-06-11 00:43:02 2.05MB 混淆矩阵
1
基于CNN-RNN的高光谱图像分类项目报告:全套代码、数据集及准确率记录管理,高光谱图像分类:CNN-RNN深度学习模型的全套解决方案,高光谱图像分类CNN-RNN结合 pytorch编写 该项目报告网络模型,2个开源数据集,训练代码,预测代码,一些函数的 拿到即可进行运行,全套。 代码中加入了每一步的预测准确率的输出,和所有迭代次数中,预测精度最好的模型输出。 所有预测结果最后以txt文本格式输出保存,多次运行不会覆盖。 设置随机种子等等。 该项目在两个数据集上精度均可达96以上(20%的训练数据)。 ,高光谱图像分类; CNN-RNN结合; PyTorch编写; 网络模型; 开源数据集; 训练代码; 预测代码; 函数; 预测准确率输出; 最佳模型输出; txt文本格式保存; 随机种子设置; 精度达96以上,高光谱图像分类:CNN-RNN模型全解析报告
2025-05-11 05:05:46 4.75MB
1
双色球作为中国福利彩票的一种彩票游戏,它具有独特的玩法和较高的知名度。双色球游戏由中国福利彩票发行管理中心组织,其销售额的一部分将用于社会福利事业和公益项目,因而它既是人们娱乐休闲的一种方式,也是参与公益、帮助他人的途径之一。 双色球游戏的玩法是,从33个红球中选择6个号码,以及从16个蓝球中选择1个号码组成一注彩票进行购买。双色球每周开奖三次,开奖结果通过电视台和网络等渠道进行公布。由于双色球的开奖结果完全随机,因此预测下一期的开奖号码具有极高的难度。 然而,市面上存在许多所谓的双色球预测工具和软件,它们声称可以通过算法、历史数据分析等方式预测下一期的开奖号码。这些工具通常会搜集大量的历史开奖数据,运用各种统计学方法、概率论算法甚至机器学习等技术进行分析,试图找出可能的规律或趋势。有的工具甚至会宣称自己的准确率能达到百分之八十或者更高。 尽管这些工具的使用者可能会有一时的好运,但必须清醒认识到,彩票的本质是随机的,每一次开奖都是独立的事件,之前的结果不会影响到未来的结果。长期来看,彩票游戏是一种期望值为负的游戏,即长期而言,玩家平均会亏损。因此,即使某些工具能够通过历史数据来辅助研究,它们也无法保证最终的中奖率,尤其是达到百分之八十这样的高准确率。 此外,必须警惕那些声称可以预测双色球开奖号码的软件或工具,很多可能只是噱头,甚至是骗局,利用人们对于一夜暴富的心理进行诈骗。在使用这些工具前,需要进行仔细的甄别,切勿轻信不实宣传,更不要投入大额资金购买彩票,以免造成不必要的经济损失。 对于那些仍然对双色球预测工具感兴趣的朋友,应当保持理性的态度,将购买彩票作为一种休闲娱乐的方式,而不是牟利的手段。同时,更加重要的是,了解并认可彩票公益的本质,即使不能中奖,也能够在一定程度上为社会公益事业作出贡献。 鉴于提供的文件名称列表"憃怓媴強桳情緿悩斉杮"并不包含任何与双色球相关的信息,因此这些文件内容的性质无法判断。对于文件的具体内容,需要进行进一步的核实与分析,以确保其中的信息真实可靠。无论如何,对待任何涉及金钱和投资的预测工具,都应持谨慎态度,避免因过度迷信而造成损失。
2025-04-06 16:58:30 1.96MB
1
数据集在计算机视觉领域扮演着至关重要的角色,特别是在深度学习模型的训练中。这个特定的消防栓数据集是从广泛使用的COCO(Common Objects in Context)数据集中精心筛选出来的,旨在帮助开发和优化针对消防栓识别的算法。COCO数据集本身是一个大规模的多类别对象识别、分割和关键点检测的数据集,包含80个不同的物体类别,旨在促进实例分割、语义分割和目标检测的研究。 消防栓数据集的特点在于它专注于一个单一的类别——消防栓,这为特定任务的模型训练提供了便利。由于它已标注,这意味着每张图片都配有详细的边界框信息,这些信息通常以TXT格式存储,记录了图像中每个消防栓的位置和形状。这种标注对于监督学习的模型训练至关重要,因为模型需要这些标注来理解什么是消防栓以及如何识别它们。 数据集仅提供训练资料,这意味着它可能没有验证或测试集,这在机器学习实践中是常见的做法。开发者通常会将数据集划分为训练集、验证集和测试集,以评估模型在未见过的数据上的表现。不过,由于这里只提供训练集,模型的泛化能力需要通过交叉验证或其他方式来确保。 使用这样的数据集,可以进行以下步骤: 1. 数据预处理:你需要读取TXT标注文件,解析边界框坐标,并与对应的图像文件对齐。 2. 模型选择:选择合适的深度学习模型,如YOLO(You Only Look Once)、Faster R-CNN或Mask R-CNN,这些模型在目标检测任务中表现出色。 3. 训练:使用预处理后的数据对选定的模型进行训练,调整超参数以优化性能。 4. 评估:由于没有独立的验证集,可以使用交叉验证技术或者设定一部分训练数据作为验证集,以监控训练过程中的过拟合。 5. 测试与优化:对模型进行测试,观察其在未知数据上的表现,并根据结果进行调整和优化。 需要注意的是,由于数据集不保证准确率,可能存在标注错误或不完整的情况。在实际应用中,应仔细检查和校正这些标注,以提高模型的训练质量。 这个消防栓数据集为研究者和开发者提供了一个专注于消防栓识别的资源,可以用于构建和改进目标检测模型,特别是对公共安全有重要意义的消防设施的自动识别系统。通过深入理解和充分利用这个数据集,可以推动相关技术的进步并提升智能系统的实用性。
2025-03-24 20:04:49 296.18MB 数据集
1
使用MeshCNN官方代码复现了其分割准确率,除了在chairs上的分割准确率偏低,其余均与论文一致 (相差不大,有高有低,大致相同)。 checkpoints文件包含: 1. 四个分割数据集的准确率testacc_log.txt以及最终生成的分割模型latest_net.pth 2. 在部分文件还保存有训练参数和loss_log。 3. 保存了部分测试模型的池化mesh (经过塌边后的模型),方便可视化
2024-11-14 16:05:28 40.35MB
1
一、实验目的 1、复习主成分分析的原理和算法 2、使用sklearn库函数实现对鸢尾花数据集的主成分分析,观察主成分分析的作用 3、(选做)解读基于主成分分析和支持向量机的人脸识别程序 二、实验步骤 1、导入鸢尾花数据集,查看数据分布情况: 选取三个特征查看数据分布情况 选取两个特征查看数据分布情况 2、使用主成分分析函数对鸢尾花数据集降维 3、对降维后的数据集和原始数据集分别进行线性判别分析,比较分析的准确率 4、(选做)使用数值计算方法实现步骤2,深入了解主成分分析的实现过程 三、实验结果与讨论 1、简单清楚的叙述主成分分析的过程 2、绘制人脸识别程序的流程框图
2024-04-17 17:37:14 1.45MB python 数据集 主成分分析 人脸识别
1
1.项目基于FasterRCNN 模型,通过RPN 网络获取图片候选区域,以Restnet50 提取特征,实现生活垃圾的智慧分拣。 2.项目运行环境:硬件环境和Python 环境。其中FasterRCNN 对计算要求较高,有一部分是Restnet50 的卷积层。必须使用较大内存的GPU 才可以完成训练。在本项目中,用华为云提供的模型训练服务(GPU tesla P100)实现,链接:https://www.hwtelcloud.com/products/mts。 3.项目包括2个模块:5 个模块:数据预处理、数据加载、模型构建、模型保存及训练、模型加载及调用。数据下载地址: https://pan.baidu.com/s/1ZAbzYMLv0fcLFJsu64u0iw,提取码 yba3 4.准确率评估:本部分包括模型准确率和分类别准确率。数据总体准确率为 0.840 识别效果比较理想。其中面包、菜根、瓜子壳的类别准确率较低。
2023-10-12 23:23:00 926KB 深度学习 python 软件/插件 人工智能
1