### 多功能低功耗精密单端转差分转换器详解 #### 一、概述 在许多现代电子系统中,为了提高信号质量和抗干扰能力,通常需要将单端信号转换成差分信号。本文旨在详细介绍一种多功能低功耗精密单端转差分转换器的设计方法及其应用场景。 #### 二、单端转差分转换器的重要性 单端信号是指相对于公共参考点(通常是地)的信号,而差分信号则是指两个信号之间的差值。差分信号的优势在于: - **抑制共模噪声**:通过使用较大的信号幅度,差分信号能够更好地抑制共模噪声。 - **提高信噪比**:相比单端信号,差分信号可以显著降低二次谐波失真,从而实现更高的信噪比。 - **适用于多种应用场景**:例如驱动现代模数转换器(ADC)、通过双绞线电缆传输信号以及调理高保真音频信号等。 #### 三、基本单端转差分转换器设计 图1展示了一种简单的单端转差分转换器设计,该设计基于AD8476精密低功耗完全差分放大器。AD8476内部集成了精密电阻,简化了电路设计。其主要特点包括: - **差分增益为1**:这意味着输出信号直接反映了输入信号的变化。 - **输出共模电压控制**:通过VOCM引脚上的电压设置输出共模电压。若未接入外部电压,则输出共模电压将由内部1MΩ电阻分压器决定。 - **噪声滤波**:电容C1用于滤除1MΩ电阻引入的噪声,进一步提高信号质量。 - **增益误差**:由于AD8476内部激光调整增益设置电阻,电路的增益误差最大值仅为0.04%。 #### 四、高性能单端转差分转换器设计 对于需要更高性能的应用场景,图2展示了更复杂的单端转差分转换器设计。该设计通过将OP1177精密运算放大器与AD8476级联,并将AD8476的正输出电压反馈至运算放大器的反相输入端来实现。这种方式的优点包括: - **提高输入阻抗**:最大输入偏置电流为2nA,有利于提高输入信号的质量。 - **减小失调电压**:最大失调(RTI)为60µV,最大失调漂移为0.7µV/°C,有助于提高整体精度。 - **反馈环路优化**:大开环增益能够减少AD8476的误差,包括噪声、失真、失调和失调偏移。 #### 五、改进型单端转差分转换器设计 为进一步提高灵活性和性能,图3展示了具有电阻可编程增益的改进型单端转差分转换器设计。这种设计的关键在于: - **增益可调**:通过外部电阻RF和RG,可以调节电路的单端转差分增益。 - **稳定性考虑**:为确保系统的稳定性,必须注意差分放大器和运算放大器的带宽匹配。具体来说,差分放大器的带宽应高于运算放大器的单位增益频率。 - **带宽限制**:如果运算放大器的单位增益频率远大于差分放大器的带宽,则可以通过在反馈路径中加入带宽限制电容CF来改善稳定性。 #### 六、实验结果分析 图4展示了图2中电路在以地为基准的10Hz、1Vp-p正弦波驱动下的输入和输出信号示波图。这些结果证实了设计的有效性和稳定性。 #### 七、结论 多功能低功耗精密单端转差分转换器是一种重要的信号处理组件,在工业控制、通信和音频等领域有着广泛的应用前景。通过合理选择器件和技术方案,可以有效提升信号处理系统的性能和可靠性。未来的研究还可以探索更多创新的技术手段,以满足不断发展的应用需求。
1
在现代电子应用中,低功耗设计越来越受到关注,尤其是在电池供电和能量采集应用中。超低功耗看门狗芯片在确保系统稳定性的同时,尽可能降低设备的功耗。本文将详细介绍一种超低功耗看门狗芯片——TPL5010,并探讨其相关特性、应用以及如何在电路设计中实现。 介绍TPL5010的主要特性。这款芯片在2.5V电压下的典型电流消耗为35纳安培(nA),能在1.8V至5.5V的电源电压范围内工作,提供了广泛的电源电压兼容性。芯片的定时时间间隔可调,范围从100毫秒(ms)到7200秒(s),满足不同应用场景需求。此外,定时器精度高达1%(典型值),并通过外部电阻设置时间间隔。TPL5010还集成了看门狗功能,用于防止系统故障时的无限期运行,这对于确保系统可靠性和安全性至关重要。 在应用场景方面,TPL5010特别适合用于电池供电的系统唤醒。例如,在休眠模式下,微控制器的定时器可能会消耗大量电能。通过使用TPL5010,其低至35纳安培的休眠电流可显著减少系统总体能耗,延长电池寿命。正因为这种节能特性,TPL5010在物联网(IoT)、出入探测、篡改检测、家庭自动化传感器、温度调节装置、消费类电子产品、远程传感器、白色家电等应用中表现出色。 在设计方面,TPL5010的简化应用电路原理图说明了该芯片的基本连接方式。其6引脚SOT23封装尺寸为3.00mmx3.00mm,便于在小型电子设备中集成。在电源管理中,利用VIN、VOUT、GND、GPIO等引脚,可以实现微控制器的唤醒和复位功能。特别是通过RSTn引脚的控制,可以手动复位系统,确保在程序跑飞时能够及时重启。 在电气特性方面,芯片的绝对最大额定值、ESD额定值、推荐操作条件、热信息、电气特性、定时要求和典型特性都有详细描述。设计者需要仔细参考这些参数来确保设计的安全性和可靠性。在设备功能模式部分,详细介绍了TPL5010的运行方式,包括正常模式、睡眠模式、唤醒模式等,以及如何通过编程实现这些模式之间的转换。 在应用和实现方面,文档提供了典型应用示例,进一步帮助设计者理解如何将TPL5010集成到系统设计中。在电源管理建议中,提供了一些减少系统功耗的技巧和建议,如采用高效率的电源转换器、优化外部组件的选择等。在布局方面,设计师需要遵循一定的布局指南,以确保电路板设计的最优性能和稳定性。 文档还提供了芯片和文档支持的信息,包括商标、静电放电警告和术语表。制造商还提供了订制封装和订购信息,帮助设计者在需要时获取芯片和相关资料。 TPL5010作为一款超低功耗的看门狗定时器,其应用涵盖了物联网、消费电子、传感器应用等多个领域。在设计时,应注意其低电流消耗特性、宽电源电压范围、长定时时间间隔以及高定时精度,这些都是选择和使用该芯片时的关键考虑因素。通过文档提供的详尽信息,设计师可以更好地理解和应用这款看门狗芯片,实现低功耗且稳定可靠的电子系统设计。
2025-06-13 11:20:37 549KB 超低功耗 看门狗芯片 datasheet
1
功耗数字多功能表是一种集成多种测量功能的便携式仪表,它能在保持高效能的同时降低能源消耗。本文主要探讨其设计与制作的关键技术点。 基础要求中提到的9V方电池供电系统需要自行设计,以确保仪表在工作时的低功耗特性。设计时,可以考虑采用DC/DC转换器,将其转换为适合各个功能模块的工作电压,并通过优化电路设计,如采用低功耗微控制器和高效能的电源管理芯片,以降低整体功耗。 在测量功能方面,低功耗数字多功能表需具备直流电压、交流电压、电阻和电容的测量能力。直流电压测量需要设计不同量程的电路,每个量程应具备±(1%+2个字)的精度和至少10MΩ的输入阻抗。交流电压测量则要求在40Hz至400Hz的频率范围内,精度为±(1.5%+5个字),同样需要高输入阻抗。电阻测量提供200Ω、2kΩ和20kΩ三个量程,精度要求±(1%+5个字)。电容测量支持100nF和100uF,精度为±(5%+10个字)。此外,还包括晶体三极管β参数测试,测试范围0到1000,精度±(2%+2个字),测试条件需在基极电流约为10uA,VCE约为3V的情况下进行。 发挥部分的设计增加了自动关机功能,这需要通过单片机编程实现,当仪表1分钟内无操作时,自动切断电源进入低功耗状态,再次按键则恢复到之前状态。另外,增加了正弦波信号源功能,输出频率10Hz至100kHz,非线性失真不超过3%,最大输出有效值5V,且幅值可调范围为100mV至5V。这些都需要深入研究模拟电路设计和微控制器编程。 在电路与程序设计中,单片机推荐选用MSP430,因为其低功耗特性非常适合此类应用。每个测量功能的电路设计需要详细计算和分析,包括放大器的选择、A/D转换器的配置以及滤波电路的设计,以保证测量精度和稳定性。同时,显示电路的设计也是关键,通常会使用LCD或者LED数码管显示测量结果。 测试方案与测试结果是评估设计成功与否的重要环节。测试方案应详细列出各个功能的测试条件,包括量程切换、精度验证、输入输出特性测试等。测试结果的完整性与分析将决定设计是否满足指标要求。 低功耗数字多功能表的设计制作涵盖了电源管理、信号处理、测量电路设计、微控制器编程等多个领域,要求设计者具备扎实的电子工程基础和实践能力。通过这个项目,不仅可以提升硬件设计和软件编程的技能,还能深入理解低功耗系统的设计原则和方法。
2025-05-25 14:07:27 97KB 数字多功能表
1
在开发案子的时候遇到了功耗降不下来,或者功耗不能满足客户的要求的 问题,下面就讲怎么降功耗。下面以 AC6321 为例进行讲解。在讲解之前先介绍几个关于杰理芯片的几个名词  powerdown -->系统进低功耗  poweroff(shutdown) -->软关机  sniff -->蓝牙呼吸模式 poweroff 该模式功耗为 2uA,基本所有的芯片都是这个功耗。该模式下 RAM 是会掉电的,芯片 只能通过按键来唤醒,其实 RTC 闹钟也可以。 powerdown AC632 在此模式下在此模式下的功耗为 18uA,不同的芯片该模式下的功耗是不一样的, 该模式下 RAM 是不掉电的,也就是说蓝牙在该模式下还能保持连接。一般我们降功耗也是希望芯片能更长的时间处于 power down 的状态。该 状态下除了通过按键和 RTC 可以唤醒以为,还可以通过系统定时器中断来唤醒。 sniff 指的是通过减少主设备发送数据的时隙数并相应减少从设备监听的时隙数,从而达到节 省电源的目的。他更多讲的是蓝牙软件上面的一种策略,实际功耗有没有降下来还是要看硬件有没有进 powerdown 在开发基于杰理芯片的蓝牙低功耗(BLE)设备时,降低功耗是一个关键的考虑因素,以确保产品能够满足客户的续航需求。本文将详细解释如何管理和优化杰理AC6321芯片的功耗,并提供一些实用的技巧。 了解杰理芯片的几种功耗模式至关重要。主要有三种模式: 1. **Powerdown**:系统进入低功耗模式,功耗约为18uA。在这种模式下,RAM不会断电,因此蓝牙连接得以保持。可以通过按键、RTC闹钟或系统定时器中断唤醒芯片。例如,可以使用`sys_timer_add()`或`sys_timeout_add()`函数设置定时器唤醒。 2. **Poweroff (Shutdown)**:软关机模式,功耗仅为2uA。RAM在此模式下会断电,唤醒通常依赖于物理按键或RTC闹钟。 3. **Sniff**:蓝牙呼吸模式,是一种软件策略,通过减少主从设备通信时隙以节省电源。实际功耗降低的效果还需查看硬件是否进入Powerdown模式。 为了降低功耗,首先需要准备合适的环境,包括一个可正常烧录程序的板子和电流测量工具,如功耗盒子。在进行功耗测试时,应移除与杰理芯片无关的硬件,以获取准确的基线数据。此外,软件配置也需调整,如关闭不必要的功能(如AD按键、电量检测和经典蓝牙),启用低功耗模式,并根据硬件配置选择DCDC或LDO供电。 在分析芯片功耗时,需要关注以下几个关键阶段: 1. **低功耗模式**:芯片进入低功耗模式后,功耗应稳定在18-20uA。如果过高,检查外围电路或更换板子。 2. **广播状态**:广播状态下,平均功耗大约为185uA,广播间隔为500ms。 3. **上电状态**:全擦除闪存上电时,由于校准过程,功耗会稍高。 4. **连接状态**:连接时的功耗受连接参数(interval、latency、timeout)影响。通过调整这些参数,可以优化连接性能并降低功耗。 杰理芯片的进出低功耗流程相对复杂,不能直接控制,而是依赖于特定的条件和事件触发。为了实现更有效的功耗管理,开发者需要深入理解芯片的低功耗逻辑,并结合软件控制策略,如合理配置Sniff模式,以及适时地使芯片进入和退出Powerdown模式。 降低杰理BLE芯片功耗的关键在于理解不同功耗模式的特点,优化软件配置,精确控制唤醒机制,以及适当调整蓝牙连接参数。通过这些方法,可以显著提升设备的电池寿命,满足各种应用场景的需求。
2025-05-21 16:57:30 2.18MB 实时音视频
1
便携式医疗设备的设计人员正面临着一些独特的挑战。医疗照护领域对电子产品的审查控管相当严格,尤其在产品设计的寿命、使用周期、还有使用上的稳定性,皆有高规格的要求。此外,电子设备的设计用途,一旦与医疗设备相关时,就产生了非常重大的意义。   举例来说,低功耗为所有设计人员共同的追求目标,低功耗意味电池可以变得更小、更轻,藉以提高产品的可移植性;对于医疗设备来说,可移植性的提高改善患者的生活质量,且患者的生命更需直接仰赖电池的寿命。   在本文中,我们将说明设计人员如何利用微控制器(MCU)进行设计、并符合医疗设备的低功耗要求。   电压和电池寿命   在低功耗应用中,微控制器的静态功耗是很 在医疗电子设备的设计中,降低功耗是至关重要的任务,特别是在便携式设备中,它直接影响设备的可移植性和电池寿命。设计者需要遵循严格的行业标准,确保产品的长期稳定性和可靠性,同时考虑到设备的特殊用途,如医疗监护,低功耗设计会直接影响患者的生活质量和安全。 微控制器(MCU)在实现低功耗设计中扮演了核心角色。MCU的选择应当注重其静态功耗,尤其是在休眠模式下的电流消耗。一些高性能MCU在休眠状态下能将电流消耗降至50 nA以下,这有助于显著延长电池寿命。此外,MCU应能在广泛的电源电压范围内工作,以适应不同类型的电池,比如1.8 V的碱性电池工作电压,确保设备能够在电池电压下降时仍能正常运行。 在设计中,采用外围电源切换策略是减少功耗的有效手段。通过微控制器控制外围设备的电源通断,只在需要时才为传感器、存储器等供电,例如在医疗监视器中,当不进行数据采集时关闭传感器和EEPROM,可以显著降低系统总功耗。利用MCU的I/O口可以直接为这些设备供电,减少了额外组件的需求,从而降低成本。 微控制器自身的功耗管理模式也是关键。当系统负载较轻时,MCU可以进入休眠模式,以进一步减少能耗。例如,如果测量和数据处理只需要11ms,那么在两次测量之间的大部分时间,MCU都可以休眠,以降低平均功耗。看门狗定时器的设置和选择也很关键,因为它决定了MCU何时从休眠状态唤醒,确保定期的数据采集。 为了准确评估设备的功耗,设计者需要进行电源预估,计算每个组件在不同状态下的电流消耗,以及在整个操作周期内的平均功耗。这包括MCU、传感器、EEPROM以及其他任何电源依赖的组件。通过这些计算,设计者可以优化设备的电源管理策略,确保在满足性能需求的同时,最大限度地延长电池寿命。 降低医疗电子设备功耗的关键在于选择低功耗MCU,智能电源管理,合理利用MCU的功耗模式,以及精确的电源预算计算。通过这些方法,设计者能够开发出既满足医疗标准又具有高效能源利用的便携式医疗设备,从而提高患者的生活质量,并保障其安全。
2025-05-18 13:28:30 158KB 基础电子
1
【基于BLUEZ的低功耗蓝牙开发】 在物联网(IoT)领域,低功耗蓝牙(Bluetooth Low Energy,简称BLE或Bluetooth LE)技术扮演着重要的角色,尤其在可穿戴设备、智能家居、健康监测等场景中广泛应用。BLUEZ是Linux内核中的蓝牙协议栈,为Linux系统提供了完整的蓝牙支持,包括对低功耗蓝牙的支持。本文将深入探讨基于BLUEZ进行低功耗蓝牙开发的相关知识点。 1. **BLUEZ简介** - BLUEZ是由Haiku, Inc.的Jouni Malinen开发的开源项目,它是Linux平台上的官方蓝牙协议栈。 - 该项目提供了API接口,允许开发者通过C++或者其他语言(如Python、Java)来实现蓝牙应用。 - BLUEZ支持各种蓝牙规范,包括经典蓝牙(Bluetooth BR/EDR)和低功耗蓝牙(Bluetooth LE)。 2. **低功耗蓝牙(BLE)基础** - BLE是一种针对短距离、低功耗通信设计的无线技术,它在蓝牙4.0及以后的版本中引入。 - BLE的特点包括低功耗、高速度、低成本以及多设备连接能力。 - BLE的角色分为中央设备(Central)和外围设备(Peripheral),中央设备通常为主动扫描和连接的设备,外围设备则提供服务。 3. **BLE服务与特性** - BLE的核心是服务(Service),服务由一组特性和它们的值组成。服务可以是标准的GATT(Generic Attribute Profile)服务,也可以是自定义服务。 - 特性(Characteristic)是服务的基本数据单元,它可以被读取、写入或者订阅。 - BLE设备通过广告(Advertising)来发现其他设备,广告包中包含设备名称、服务UUID等信息。 4. **BLUEZ API** - 开发者可以通过BLUEZ提供的DBUS接口进行BLE开发,这包括`org.bluez`命名空间下的各种对象,如Adapter、Device、Agent等。 - `Adapter`代表蓝牙适配器,用于管理设备的扫描、连接、配对等操作。 - `Device`表示连接的蓝牙设备,可以读取其属性和服务。 - `Agent`是处理用户输入和输出的代理,如配对密码的输入。 5. **GATT服务和特征操作** - GATT是BLE的核心,用于传输数据和服务发现。 - 使用BLUEZ,开发者可以创建、修改服务和特性,以及执行读取、写入、订阅等操作。 - 示例代码可能包括创建自定义服务、添加特性、监听并响应来自其他设备的数据变化。 6. **BLE安全与隐私** - BLE支持安全连接,包括加密和身份验证,以保护数据的安全。 - 隐私模式可以防止设备被持续跟踪,通过随机化MAC地址来降低被识别的风险。 7. **调试与工具** - `bluetoothctl`是BLUEZ提供的命令行工具,用于控制蓝牙适配器,进行设备扫描、连接、配对等操作。 - `gatttool`是另一个命令行工具,可以用于GATT服务的交互,如读取、写入特性值。 总结,基于BLUEZ的低功耗蓝牙开发涉及多个层面,包括理解BLE技术本身、熟悉BLUEZ提供的API和工具、以及实际编写和调试BLE应用。开发过程中,开发者需要掌握如何构建服务和特性,处理连接和数据交换,并确保安全性。通过深入学习和实践,开发者能够创建出满足需求的BLE应用。
2025-05-15 22:35:50 1009KB
1
内容概要:本文详细介绍了一款超低温漂带隙基准电路的设计过程,涵盖理论推导、电路设计、调试优化及最终性能评估。该电路采用Cadence 618进行设计,实现了2.4ppm的温度系数、90dB的电源抑制比(PSRR)和14.47uA的工作电流。文中不仅展示了关键代码片段,还分享了调试过程中遇到的问题及解决方案,如温度补偿、运放结构优化、电源噪声抑制等。此外,作者提供了完整的工艺库和虚拟机安装包,便于读者复现设计。 适合人群:从事集成电路设计的专业人士,尤其是对带隙基准电路设计感兴趣的研发人员和技术爱好者。 使用场景及目标:适用于需要高精度、低功耗参考电压的应用场合,如便携式设备、精密测量仪器等。目标是帮助读者掌握带隙基准电路的设计方法,提高电路的稳定性和可靠性。 其他说明:文章中包含了详细的电路设计步骤、仿真设置、调试技巧以及最终的实测数据,有助于读者深入理解带隙基准电路的设计原理和实践要点。同时,提供的工艺库和虚拟机安装包可以降低初学者的学习门槛,加快设计进程。
2025-05-12 10:42:30 2.41MB Cadence
1
赛灵思公司推出的UltraScalePlus-XPE-2023.1功耗评估工具是一款专门用于计算和评估FPGA(现场可编程门阵列)在不同工作状态下功耗的软件工具。该工具是针对赛灵思公司的UltraScale Plus系列FPGA产品而设计,能够为用户提供精确的功耗数据分析,帮助设计师在设计阶段就能对产品功耗进行有效控制,从而优化FPGA系统的能效比。 UltraScalePlus-XPE-2023.1功耗评估工具采用了先进的计算模型,可以根据用户输入的设计参数,如工艺节点、频率、电压、工作温度、芯片资源利用率等,进行复杂计算并输出功耗报告。这份报告通常包括静态功耗和动态功耗两大部分,静态功耗主要由芯片的工作电压和阈值电压决定,而动态功耗则与芯片的开关活动有关,与工作频率和温度等因素紧密相连。 该工具支持多种工作场景的功耗分析,用户可以根据实际应用场景设定不同的参数进行评估,例如在数据传输、信号处理、存储操作等多种工作模式下,都能得到具体的功耗估计。此外,该工具还具备快速评估和详细分析的功能,可以帮助用户在项目初期迅速了解功耗情况,进而进行针对性的优化设计。 在工程实践中,赛灵思的功耗评估工具还能够与硬件描述语言(如VHDL、Verilog)相结合,实现对设计代码级功耗的精确评估。通过该工具,工程师能够对代码进行优化,比如减少逻辑门的使用、优化时钟树结构、减少不必要的信号切换等,从而在源头上降低功耗。 赛灵思公司不断更新其功耗评估工具,以适应新的工艺技术进步和市场需求。UltraScalePlus-XPE-2023.1版本在继承以往版本优点的基础上,增加了更多针对新型UltraScale Plus系列FPGA芯片的特性支持和优化,使得评估结果更为可靠和全面。同时,更新的用户界面和操作流程,使得用户能够更加便捷地使用该工具,提高了工作效率。 对于电子工程师和系统设计者来说,选择合适的功耗评估工具至关重要,它不仅关系到产品的性能和寿命,也直接影响到成本和市场竞争力。因此,UltraScalePlus-XPE-2023.1功耗评估工具是进行高性能FPGA设计不可或缺的辅助工具之一。
2025-05-10 22:25:25 3.73MB
1
针对低功耗蓝牙(Bluetooth Low Energy,BLE)正交上/下变频收发机,实现了一种低功耗的正交信号产生器。相比传统电流复用技术VCO,增加尾电流源以降低平均电流损耗,同时确保相位噪声满足指标要求。基于TSMC 0.18 μm标准CMOS工艺的仿真结果表明,正交信号频率为849.7 MHz时,在偏移中心频率1 MHz时的相位噪声为-126 dBc/Hz;在1.8 V电源电压下仅消耗1.05 mA电流,FoM值为182 dBc。经过二分频后的正交信号总体频率范围是783~866 MHz,整体版图面积为0.38 mm2。相位噪声和频率范围满足BLE指标要求,对其他低功耗射频应用具有指导意义。 本文介绍了一种基于电流复用技术的低功耗正交信号电压控制振荡器(VCO),特别适用于低功耗蓝牙(BLE)正交上/下变频收发机。传统电流复用技术的VCO在降低平均电流损耗方面存在局限,而本文的设计通过增加尾电流源来解决这一问题,同时保持了所需的相位噪声性能。 在频率合成器中,VCO是关键组件,其功耗直接影响整个系统的能耗。正交信号在正交变频过程中起到关键作用,常见生成方法有无源多相网络、双VCO耦合和VCO后置二分频器。这些方法各有优缺点,例如无源多相网络需要精确匹配,双VCO耦合会增加面积,而VCO后置二分频器则会增加功耗。 电流复用技术已经成为降低电路功耗的有效手段。文献中提到的电流复用VCO设计,如通过VCO与接收机或二分频器的电流复用,实现了低功耗输出。但某些设计引入变压器或采用特殊的晶体管结构,可能增加成本或导致稳定性问题。例如,变压器会增加芯片面积,而使用PMOS负阻对或NMOS VCO的交流信号可能会引入相位噪声问题,或者需要复杂的衬底偏置技术来保证稳定工作。 本文提出的解决方案是在0.18微米TSMC标准CMOS工艺下,采用NMOS VCO与二分频器的堆叠结构,实现电流复用,同时利用尾电流源来降低平均电流损耗。这种设计减少了中间节点Vmid的接地电容,有助于提高效率。电路仿真结果显示,在1.8 V电源电压下,VCO在849.7 MHz频率下产生正交信号,相位噪声为-126 dBc/Hz@1 MHz,电流消耗仅为1.05 mA,频率范围为783~866 MHz,面积为0.38 mm²,满足BLE标准要求,并对其他低功耗射频应用具有参考价值。 电路设计部分详细阐述了VCO电路结构,由NMOS负阻对和LC谐振网络组成,二分频器则作为VCO的尾电流源,通过外部电流镜提供的偏置电压Vb1和Vb2以及尾电流源管M13来控制电流。这种设计降低了对VCO谐振网络的影响,从而降低了相位噪声并优化了功耗。 本文提出了一种创新的低功耗正交信号VCO设计,通过电流复用技术和尾电流源优化,实现了高性能与低功耗的平衡,对低功耗蓝牙和其他射频应用具有重要的实际应用意义。
2025-04-29 19:32:20 494KB 电流复用
1
《MM32L0xx低功耗系列单片机IAP实验详解》 在嵌入式系统开发中,In-Application Programming(IAP)是一种重要的技术,它允许程序在运行时更新自身的固件,无需外部编程设备。本实验以灵动微电子的MM32L0xx系列低功耗单片机,特别是MM32L073为例,来探讨如何实现IAP功能,并通过串口进行程序更新。MM32L0xx系列单片机因其高效能、低功耗的特性,被广泛应用于各种对电源要求严格的场合,且与STM32系列MCU在硬件结构上有高度兼容性,可以实现PIN to PIN的替换。 IAP的核心在于设计一套安全可靠的程序更新机制。在MM32L073中,这通常涉及到对Bootloader的理解和编程。Bootloader是系统启动时执行的第一段代码,负责加载和启动应用程序。在IAP模式下,Bootloader需具备接收、验证和写入新固件到闪存的能力。用户通过串口发送新的固件数据,Bootloader接收到这些数据后,会校验其完整性,然后按照特定的编程算法写入到Flash中。 实现IAP的关键步骤包括: 1. 分配Flash空间:为新固件和Bootloader预留足够的存储空间,通常Bootloader位于Flash的较低地址,而应用程序占据较高地址。 2. 设计安全的更新流程:在更新过程中,确保不会因电源问题或意外中断导致系统不稳定。例如,可以采用双Bootloader策略,让一个Bootloader负责更新另一个。 3. 串口通信协议:定义合适的通信协议,如UART(通用异步收发传输器),用于主机与单片机之间的数据传输。需要考虑错误检测和重传机制。 4. 程序验证:更新完成后,Bootloader需验证新固件的正确性,确保其可执行。 5. 跳转执行:验证无误后,Bootloader将控制权交给新固件,完成更新过程。 在提供的压缩包文件中,"闪灯APP.rar"可能是实现IAP功能的应用示例,它可能包含了一个简单的LED闪烁程序,用于演示IAP的更新过程。而"MM32L073_IAP"文件则可能包含了针对MM32L073的Bootloader源码和相关配置,开发者可以通过分析和修改这些代码,来定制自己的IAP实现。 MM32L0xx系列单片机的IAP实验是一个深入理解单片机内部结构和Bootloader设计的良好实践。通过这个实验,开发者不仅能掌握IAP的基本原理,还能学习到如何利用串口进行远程更新,这对于物联网设备的远程维护和固件升级具有重要意义。同时,由于MM32L0xx与STM32的兼容性,使得开发者可以轻松地将STM32的开发经验迁移到灵动微电子的平台,降低了开发难度和成本。
2025-04-27 00:30:58 966KB MM32
1