内容概要:本文介绍了 MATLAB, RoadRunner 和 Sumo 在动力总成预测性能量管理软件测试中的联合仿真方法。具体涵盖了动力总成预测性能量管理软件的功能、测试环境的搭建、静态和动态场景的创建以及应用场景。文中详细讲解了如何利用这三种工具搭建虚拟测试环境,包括虚拟道路地图的生成、交通流的配置、车辆模型的仿真、驾驶员在环控制以及场景环境的泛化应用。重点讨论了如何利用联合仿真环境提升软件测试效率和准确性,尤其是在驾驶风格识别和速度序列预测方面。
适合人群:具备一定编程基础和技术背景的汽车工程师和研究人员。
使用场景及目标:适用于需要对混合动力汽车的动力总成预测性能量管理系统进行仿真测试和优化的研究机构和汽车制造商。目标是提高软件的鲁棒性和预测精度,同时降低实际测试的成本和时间。
其他说明:通过联合仿真环境,可以在虚拟环境中模拟各种复杂的驾驶情景,为动力总成预测性能量管理软件的研发提供了有力支持。未来在自动驾驶和其他智能汽车领域的应用潜力巨大。
1