内容概要:本文档提供了一个用于股票技术分析的获利标签指标副图指标代码。该代码主要由多个部分组成,包括获利比例计算、市场趋势分析、买卖区间判断以及强势波段识别。通过计算当前价格的获利比例,并与前一日进行对比,使用不同颜色的线条表示不同的获利水平。同时,利用移动平均线(MA)来评估市场趋势,通过比较短期和长期均线的变化率,用彩色线条展示市场的涨跌情况。此外,还定义了买卖线,当买线高于卖线时显示蓝色,反之则为绿色。最后,通过一系列复杂公式计算出“紫色强势波段”,以判断当前是否处于强势市场。; 适合人群:对股票交易和技术分析有一定了解的投资者或分析师。; 使用场景及目标:①帮助投资者直观地了解股票的获利情况;②辅助判断市场趋势,识别买卖时机;③通过技术指标分析,提高投资决策的准确性。; 其他说明:此代码适用于支持同花顺或其他兼容技术分析软件平台,用户可以根据自身需求调整参数设置,以更好地适应不同的市场环境。
2025-08-03 13:28:17 2KB 股票分析 技术指标 市场趋势
1
内容概要:本文档详细介绍了基于LSSVM(最小二乘支持向量机)和ABKDE(自适应带宽核密度估计)的多变量回归区间预测项目的实现过程。项目旨在通过结合LSSVM与ABKDE,提升回归模型在处理高维、非线性及含噪声数据时的表现。文档涵盖了项目背景、目标、挑战及解决方案,重点阐述了LSSVM与ABKDE的工作原理及其结合后的模型架构。此外,文中提供了Python代码示例,包括数据预处理、模型训练、自适应带宽核密度估计的具体实现步骤,并展示了预测结果及效果评估。; 适合人群:具备一定机器学习和Python编程基础的研究人员和工程师,特别是对支持向量机和核密度估计感兴趣的从业者。; 使用场景及目标:①处理高维、非线性及含噪声数据的多变量回归问题;②提升LSSVM的回归性能,改善预测区间的准确性;③应用于金融预测、医疗诊断、环境监测、市场营销和工业工程等领域,提供更精确的决策支持。; 其他说明:项目不仅关注回归值的预测,还特别注重预测区间的确定,增强了模型的可靠性和可解释性。在面对复杂数据分布时,该方法通过自适应调整带宽,优化核密度估计,从而提高模型的预测精度和泛化能力。文档提供的代码示例有助于读者快速上手实践,并可根据具体需求进行扩展和优化。
2025-07-13 22:23:21 43KB Python 机器学习 LSSVM 多变量回归
1
内容概要:本文详细介绍了高斯过程回归(GPR)在时间序列区间预测中的应用。首先阐述了时间序列预测的重要性和挑战,特别是提供预测区间的必要性。接着深入讲解了GPR作为一种非参数化的贝叶斯方法的特点,强调其在处理小样本数据和复杂非线性关系方面的优势。文中通过具体的Python代码展示了如何使用Scikit-learn库实现GPR模型,包括数据准备、模型训练、预测以及结果可视化。特别关注了核函数的选择和超参数优化对模型性能的影响,并讨论了GPR在不同类型时间序列数据(如带有周期性、趋势性或突变点的数据)中的适应性和局限性。 适合人群:对机器学习尤其是时间序列分析感兴趣的科研人员、数据科学家和技术爱好者。 使用场景及目标:①理解和掌握GPR的基本原理及其在时间序列预测中的应用;②学会使用Python实现GPR模型并进行区间预测;③探索不同类型的核函数对预测效果的影响。 其他说明:虽然GPR在短中期预测中表现出色,但对于大规模数据集和长时间跨度的预测可能存在计算效率的问题。此外,合理的核函数选择对于提高预测精度至关重要。
2025-07-07 16:02:26 495KB
1
内容概要:本文介绍了如何使用Matlab实现Transformer-ABKDE(Transformer自适应带宽核密度估计)进行多变量回归区间预测的详细项目实例。项目背景源于深度学习与传统核密度估计方法的结合,旨在提升多变量回归的预测精度、实现区间预测功能、增强模型适应性和鲁棒性,并拓展应用领域。项目面临的挑战包括数据噪声与异常值处理、模型复杂性与计算开销、区间预测准确性、模型泛化能力以及多变量数据处理。为解决这些问题,项目提出了自适应带宽机制、Transformer与核密度估计的结合、区间预测的实现、计算效率的提高及鲁棒性与稳定性的提升。模型架构包括Transformer编码器和自适应带宽核密度估计(ABKDE),并给出了详细的代码示例,包括数据预处理、Transformer编码器实现、自适应带宽核密度估计实现及效果预测图的绘制。; 适合人群:具备一定编程基础,特别是熟悉Matlab和机器学习算法的研发人员。; 使用场景及目标:①适用于金融风险预测、气象预测、供应链优化、医疗数据分析、智能交通系统等多个领域;②目标是提升多变量回归的预测精度,提供区间预测结果,增强模型的适应性和鲁棒性,拓展应用领域。; 其他说明:项目通过优化Transformer模型结构和结合自适应带宽核密度估计,减少了计算复杂度,提高了计算效率。代码示例展示了如何在Matlab中实现Transformer-ABKDE模型,并提供了详细的模型架构和技术细节,帮助用户理解和实践。
2025-05-27 08:44:07 38KB Transformer 多变量回归 MATLAB
1
PLOT_CI 绘制置信区间和两个置信度之间的补丁间隔线。 X 是对应于水平轴的 nx1 向量。 Y 可以是 nx1、nx2 或 nx3 矩阵。 如果 Y 是 nx1 向量,则 PLOT_CI 只绘制主线。 如果 Y 是 nx2,则函数假设只有两个置信区间与补丁一起绘制封闭在它们之间。 如果 Y 是 nx3 的矩阵,则 PLOT_CI 绘制主线, 两条置信区间线,以及它们之间的补丁。 主线由矩阵 Y 的第一列指定,而置信度间隔由第 2 和第 3 列确定。 PLOT_CI(...,parameter1,value1,parameter2,value2,...) 允许设置主线、补丁和置信区间线的参数, 比如线型、线宽、颜色等。 该函数识别以下参数: '主线宽度' '主线样式' '主线颜色' '行宽' '线型' '线条颜色' '补丁颜色' 'PatchAlpha' '轴句柄' 'XScale'
2025-03-28 22:04:19 4KB matlab
1
在MATLAB环境中,区间计算是一种处理不确定性数据的重要方法,它涉及到数学、工程和科学领域的许多应用。"matlab区间计算包"就是专为这类计算设计的工具箱,它提供了丰富的函数和工具,使得用户能够在MATLAB中进行精确的区间分析。这个包的名字“intlab”可能就是这个工具箱的名称,暗示了它专注于“interval lab”或区间计算实验室。 区间数学是一种处理含有不确定性的数值的方法,它将每个数值视为一个包含所有可能值的区间,而不是一个精确的点。这在处理测量误差、计算误差或存在不确定性的模型时特别有用。MATLAB的intlab工具箱为这种计算提供了一系列的功能,包括: 1. **区间算术**:基本的加、减、乘、除等运算可以应用于区间对象,返回的结果是包含所有可能结果的区间。 2. **函数评估**:可以对任何定义良好的连续函数进行区间输入,并得到区间输出,这对于分析函数的不确定性非常有帮助。 3. **不等式求解**:intlab能够解决区间形式的不等式系统,这对于优化问题和系统分析是必要的。 4. **线性代数操作**:包括区间矩阵的乘法、逆、特征值、解线性方程组等,这些在工程和科学计算中非常常见。 5. **微积分和数值分析**:区间微积分可以帮助分析函数的导数和积分的不确定性,而区间牛顿法等数值方法则可以用于求解非线性方程和优化问题。 6. **控制理论应用**:区间分析在控制系统的设计和稳定性分析中扮演重要角色,intlab提供了相应的函数支持。 7. **图形可视化**:区间数据的可视化是理解其性质的关键,intlab可能包含绘制区间图和多维区间数据的函数。 8. **编程接口**:工具箱通常会提供与MATLAB主环境无缝集成的接口,允许用户在自己的MATLAB代码中方便地使用区间计算功能。 使用intlab,工程师和研究人员可以更准确地评估和量化不确定性,这对于建立鲁棒的模型、优化决策过程以及提高系统性能至关重要。通过学习和熟练掌握intlab工具箱,用户可以提升处理不确定性问题的能力,为实际问题找到更为稳健的解决方案。
2024-09-20 11:03:09 4.44MB matlab
1
用于二型模糊相关代码,包括降维,区间二型模糊运算,模糊控制等
2024-05-22 17:00:12 36KB 模糊控制
基于高斯过程回归(GPR)时间序列区间预测,matlab代码,单变量输入模型。 评价指标包括:R2、MAE、MSE、RMSE和区间覆盖率和区间平均宽度百分比等,代码质量极高,方便学习和替换数据。
2024-04-18 16:11:03 25KB matlab
1
% function [y_lb,y_ub]=CI_reg(fun_name,a,b,k,K,Expansion) % 输入% fun_name 被调用的函数名% a 区间输入的下界向量% b 区间输入的上界向量%k CI展开的顺序%K 每个区间变量的扫描(验证)点% 切比雪夫多项式的扩展扩展类型-“完整”或“部分” % 输出y_lb响应下限% % y_ub 响应上限 % 例子%[y_lb1,y_ub1]=CI_reg(@double_pendulum,[0.99 1.98]',[1.01 2.02]',4,10,'full');
2024-04-15 17:56:03 13.37MB matlab
1
MATLAB求解无穷区间定积分问题 源程序代码.zip
2024-03-04 10:02:20 2KB
1