内容概要:本文详细介绍了使用MATLAB进行多水下航行器(AUV)协同定位的仿真研究。首先构建了一个简化的双AUV场景,其中一个作为Leader配备高精度惯性导航系统,另一个作为Follower仅有低成本传感器。通过引入扩展卡尔曼滤波(EKF),实现了基于相对距离测量的状态估计优化。文中展示了具体的MATLAB代码实现,包括系统参数初始化、运动模型建立、相对位置测量以及EKF更新步骤。实验结果表明,经过多次协同观测后,Follower的位置误差显著减少。此外,还讨论了实际应用中可能遇到的问题如通信延迟、数据丢失等,并提出了相应的解决方案。最后展望了未来的研究方向,如加入更多AUV形成观测闭环、改进通信协议等。 适合人群:从事水下机器人研究的技术人员、高校相关专业师生、对水下导航感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解水下机器人协同定位原理和技术实现的研究人员;旨在帮助读者掌握EKF在水下定位中的应用,提高多AUV系统的定位精度。 其他说明:文中提供了完整的MATLAB代码片段,便于读者动手实践;强调了理论与实践相结合的学习方式,鼓励读者尝试不同的参数配置以探索最佳性能。
2025-05-27 09:44:44 1.06MB MATLAB 传感器融合
1
本文主要介绍了单站无源雷达,多站侧向交叉无源雷达以及多站时差无源雷达的基本原理、设计方法和定位误差分析。
2023-05-25 23:06:25 1.71MB 雷达
1
一种移动目标协同定位系统及定位方法 讲述对于移动目标的协同定位
2022-07-17 17:26:56 1.02MB 定位
1
研究了多机器人观测到同一目标时的协同定位问题。建立了各个机器人相对观测一致程度的数学描述模型,进而提出用基于极大熵准则的最大熵博弈获取使相对观测一致程度最优的协同定位方式。针对博弈结果的多样性,相应地改变观测方程的雅克比矩阵,推导了可适应多机器人各种博弈结果的扩展Kalman滤波协同定位算法。仿真实验表明,方法可实现机器人团队在协同定位时有选择、更高效地共享相互间的观测信息;在保证协同定位精度提高的同时有效地消除了多机器人相对观测信息间的冲突。
2022-03-28 14:19:05 1.16MB 工程技术 论文
1
针对Taylor算法进行TDOA定位时,其初始估计位置的误差易导致Taylor算法不收敛和定位精度差的问题,提出一种基于自然选择的线性递减权重粒子群优化(W-SPSO)与Taylor算法协同定位的方法。该方法先通过W-SPSO算法得到一个初始估计位置(x,y),再通过Taylor算法在(x,y)处进行迭代运算得到最终定位结果。不同噪声情况下的仿真结果显示:W-SPSO与Taylor算法协同定位方法对MS坐标估计值的均方差(RMSE)小于标准PSO(粒子群优化)、SelPSO(基于自然选择的粒子群优化算法)、W-SPSO、Taylor以及Chan五种算法的RMSE。因此,所提出的定位方法在保留了SelPSO算法求解精度和收敛性的基础上,同时提高了全局搜索能力,使其具有更高的定位精度和收敛性。
1
coloc:基于视觉的微型飞行器协同定位
2021-10-09 14:12:22 87KB computer-vision localization uav robotics
1
行业分类-物理装置-基于激光雷达与定位向量匹配的多无人机协同定位方法.zip
协同定位下使用迭代方式实现对多移动目标的协同定位,不完全依靠基站,通过与其他客户端的有效通信来实现位置的实时更新和精度以及通信开销的提高
2019-12-21 20:27:05 6KB matlab LS coorperative localization
1